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AFIT/GAE/ENY/97D-05 

Abstract 

Recent research efforts have applied the receding horizon Model Predictive Control (MPC) 

strategy to linearized high performance aerospace systems. The research contained in this the- 

sis used these recent results in order to apply the MPC strategy to a nonlinear high performance 

aerospace system, specifically an F-16 fighter aircraft model. The model was commanded to fol- 

low dynamic trajectories of roll angle and altitude. Further, adaptive constraint techniques were 

used to improve system tracking. 

To accomplish these tasks, code and block diagrams were generated using the commercial 

software packages of Matlab and Simulink. Numerous simulations were conducted with the goal 

of achieving realistic aircraft performance. In many cases, to improve system tracking and reduce 

control input oscillations, rigid mathematical constraints previously used in the MPC strategy were 

relaxed. 

xxii 



CONSTRAINED MODEL PREDICTIVE CONTROL 
OF A NONLINEAR AEROSPACE SYSTEM 

Chapter 1 - Introduction 

1.1 Model Predictive Control 

Model Predictive Control (MPC) is a control strategy which optimizes a specified performance 

index over a set of future inputs to minimize future output deviations from a specified trajectory. 

MPC typically operates on three receding horizons: an optimization horizon, a control horizon and 

a prediction horizon. An on-line optimization takes place over the optimization horizon while future 

control inputs are calculated over the control horizon and future output trajectories are calculated 

over the prediction horizon. The controller then implements the first control input, discards the rest, 

and recalculates the next series of control inputs at the next time step. Because of the computational 

intensity due to the on-line optimization, MPC has traditionally been applied to low-bandwidth 

processes. 

Recent work has focused on applying the MPC strategy to high performance linearized aerospace 

systems [4], [11], [6]. Frequently, MPC formulations which use a stabilizing inner feedback loop 

have been applied to such systems. The use of a stabilizing inner feedback loop guarantees system 

tracking within a finite number of time steps for discrete controller poles placed at the origin. Future 

commanded inputs are generated by optimizing over a reference signal, v, which is the input to the 

inner feedback loop. This optimization allows for an independent optimization horizon, r, because 

the optimal plant inputs are no longer directly calculated. Also, the use of the inner stabilizing feed- 

back loop ensures stability through the existence of a monotonically decreasing cost function. The 

distinct advantage of the MPC strategy over traditional controller designs is its ability to account for 

1 



changing system constraints, i.e. actuator limits and rates, as well as output state constraints such 

as altitude and bank angle. 

1.2 Importance of Research 

Because the MPC strategy is capable of dealing with changing constraints, it is potentially 

suited to aerospace systems in which complete or partial actuator failures are possible. With aircraft 

which are statically unstable or at best neutrally stable, human response may not be sufficient to 

maintain positive control of an aircraft following an actuator failure. Also, as flight research con- 

tinues into the use of new combinations of actuators and reduced torsional stiffness wings [10] , 

designing controllers which provide the greatest control authority using the least control power may 

be difficult using classical control techniques. The MPC strategy is also suited to flight test work 

because of its ability to handle changing constraints. In an actual flight test, the MPC controller 

could potentially act as safety watch dog, preventing the pilot or test from exceeding certain para- 

meters. By predicting these future parameters, the actuator constraints can be modified real time to 

prevent a dangerous situation before it occurs. MPC can also be coupled with current Pilot Induced 

Oscillations (PIO) research. By predicting future outputs, pilot inputs can be modified to assist cur- 

rent filter designs in the prevention of PIO. 

1.3 Research Objectives 

Before MPC can be realized on an actual aerospace system, it must be shown to work well on 

simulations involving a nonlinear plant. Building upon past work, this thesis examined four areas of 

use of an MPC controller. The first was to expand the recent work [4] of step responses and demon- 

strate MPC's ability to handle dynamic trajectories. The second was the application of the MPC 

strategy to a nonlinear F-16 aircraft model. The third area was the relaxation of rigid mathemati- 

cal constraints associated with pole placement. And last was the application of adaptive constraints 



to improve system tracking and reduce overall required control power. These four areas were re- 

searched with an overriding emphasis that simulations should model realistic aircraft performance. 

1.4 Thesis Overview 

Chapter 2 explains the mathematical derivations of the state space MPC formulation. Devia- 

tions from earlier works are noted, and potential tuning parameters are identified. The chapter also 

addresses the rigid mathematical constraints previously used in MPC studies and offers a heuristic 

approach to achieve asymptotic stability. Chapter 3 details the F-16 linear and nonlinear aircraft 

models which were used in this research. The two models as well as the entire MPC block dia- 

gram are described in detail. Additionally flight conditions, open loop pole locations and potential 

problems associated with differences between the two models are identified. Chapter 4 presents the 

results of various MATLAB simulations which were designed to demonstrate MPC's ability to meet 

the research objectives. Chapter 5 offers conclusions and recommendations, based upon the results 

of the research, providing starting points for future research. 



Chapter 2 - Review of Literature and Mathematical Development 

2.1  General Predictive Control and Stable Generalized Predictive Control 

This section covers the basics of two of the more common types of Model Predictive Control. 

The first is General Predictive Control (GPC) and the second is Stable Generalized Predictive Con- 

trol (SGPC). The advantages and disadvantages of each are discussed and a suitable method was 

chosen. 

2.1.1   Generalized Predictive Control 

GPC's basic concept is to minimize a cost function across separate input and output horizons, 

where a horizon is an integer number of steps into the future. Over the output horizon, the tracking 

error, 

e   =   y(k)-s (k) 

y(k)   =   System Outputs at Time Step k (1) 

s(k)   =   Commanded Trajectory at Time Step k, 

is minimized. Over the input horizon the optimization minimizes the required control power to 

reduce the tracking error, e. To do this, GPC uses an explicit plant model of the form 

x(k + l)   =   Ax{k)+Bu{k) 

y{k)    =   Cx(k) 

to predict the plant outputs, y, across the output horizon, N. The control inputs are weighted and 

optimized over a separate input horizon, Nu. The Single Input Single Output (SISO) expectation 

cost function is 
( N Nu ~\ 

J(k)   =   E\j2[y(k + l)-s(k + l)]2 + \Y,&<k + l-l)2\ (2) 
U=i 1=1 

Au(fc)    =   u{k)-u(k-l) 



where A is the weighting of the control power. An expectation operator is used because the output, 

y(k +1), can be contaminated by various noise sources. 

There are several advantages of GPC over other controllers. First there is no requirement 

to know the system closed loop poles and there are no ill effects caused by closely spaced zeros 

and poles [4] . GPC also allows the use of control input constraints as well as system constraints. 

These constraints provide the control designer more tuning parameters to improve system tracking. 

However, GPC's major fault is it offers no guarantee of stability. 

2.1.2   Stable Generalized Predictive Control 

Stable Generalized Predictive Control (SGPC) builds upon GPC's advantages and adds a stabil- 

ity guarantee. This stability guarantee is realized by the introduction of a stabilizing inner feedback 

loop based upon the Youla parameterization of all stabilizing controllers [7] .With the introduction 

of an inner feedback loop, the MPC controller now operates on a reference input v(k). This allows 

the introduction of a new optimization horizon r over which the cost function is minimized. If the 

discrete poles of the stabilizing inner feedback loop are chosen to be at the origin, Finite Impulse 

Response (FIR) behavior is achieved. FIR behavior implies that a system will achieve a steady state 

value over a finite horizon. When used with a cost function that minimizes tracking error, both sta- 

bility and a monotonically decreasing cost function are guaranteed provided specific horizon con- 

ditions are met [4] . In this thesis the requirement for FIR behavior was relaxed and it was shown 

that a finite error could be reached over a finite horizon. Because of the ability to reach a finite error 

and the stability guarantee, the SGPC method was chosen. 

2.2 State Space Formulation of MPC 

The state space formulation of SGPC was done in a four step process. First the SISO cost 

function of Equation 2 was rewritten in multiple input multiple output (MDVIO) form. Once the cost 



function was identified, step two involved developing a stabilizing inner feedback loop. In step 

three the state prediction matrices were developed, which were used by the optimization routine to 

predict future outputs, states and inputs. Finally, a MATLAB quadratic optimization routine was 

applied to the equations developed. 

2.2.1 Cost Function 

An expansion of the SISO cost function of Equation 2 in MEVIO form gives 

w = Eii2/(fe+o-^+ot+EiiA^+^-i)il. (3) 
i=i i=i 

where 

Ry     >    0 

Äu   >   0 (4) 

Tty = JXy 

"U       =       **"U • 

The selection of Ru to be positive semidefinite implies that infinite control power could be com- 

manded of the system. However, this was avoided as the control inputs were constrained. Due to 

the stabilizing inner feedback loop a reference input v(k) is introduced. This allows the cost func- 

tion, J(k), to be minimized over the optimization horizon r at each time step k. The difference 
i 

of system outputs, y, and setpoint trajectories, s, are weighted by Ry over the prediction horizon, 

p. Incremental control inputs, Ait, are varied along the control horizon, q, while weighted by the 

matrix R&. 

2.2.2 Stabilization of a ITI Plant using Coprime Factorization 

The controller used in this thesis was based upon an inner loop feedback which provided sta- 

bility of the plant, G. Given that the plant G is a proper and real-rational transfer matrix that is both 

stabilizable and detectable, it can be factored into a right coprime factorization (RCF) and a dual 



left coprime factorization (LCF) [14, 127]. 

G(z)   =     N(z)M-1(z)    RCF 

G(z)   =     M-1{z)N{z)    LCF 

(5) 

These factorizations satisfy the Bezout Identity [14, 126] in Equation 6. 

X    -Y 
M    N 

N     Y 
-M   X = 1 (6) 

From the factorization and the Bezout Identity, the set of all proper controllers which achieve internal 

stability are parameterized by the following [14, 323] : 

K   =   (-X + MZr){Y + NZr)-
1 

K   =    (Y + ZiNy1 (-X + ZJM) (7) 

X,Y,X,Y,M,N,M,N,Zr,Zi   e   RH^. 

Before using Equations 6 and 7 it is necessary to first define the discrete plant G and introduce a 

feedback variable v. 

G   = 
' A B ' 

C D (8) 

(9) 

(10) 

(11) 

x(k + l)   =   Ax(k) + Bu(k) 

y(k)   =   Cx(k)+Du(k) 

Now introduce a state feedback variable, v (k), according to 

vik)   =   Z~x [u{k) - Frx{k)\ or 

u(k)   =   Frx{k) + Zrv(k). (12) 

Substituting Equation 12 back into 9 and 10 the new system in terms of the state feedback variable 

v(k) is 

x(k + 1) = [A + BFr] x(k) + BZrv(k) (13) 

y{k) = [C + DFr) x(k) + DZrv(k) (14) 



Realizing this in terms of a RCF 

yields the following results 

M 
N 

A + BFr 

Fr 

C + DFr 

BZr 

DZr 

(15) 

(16) u   =   Mv 

v   =   M~lu 

y   =   Nv 

y   =   NM~xu. 

Fr is then chosen so that A + BFr has stable poles. In past research ([4] , [6] ) these poles have 

been chosen to be at the origin, yielding Finite Impulse Response (FIR) behavior. Here, however, 

the only requirement is that the poles are stable, i.e. they must be within the unit circle. 

Solving the dual problem 

[ M   N ] 
A + LC 

ZiC 
L    B + LD 
Zi       ZiD 

(17) 

where the poles of A + LC are chosen so the system is stable. 

2.2.3   State Prediction 

Before the reference signal, v, can be input to the system from the optimizer, it is necessary 

first to calculate that signal from known information. Expanding upon Equations 12, 13, and 14, 

the discrete time state estimates are written as 

x(k + 1) = Ax(k) + Bu(k) + L [y{k) - y(k)] (18) 

but the estimated 

y(k) = Cx(k) + Du(k) (19) 

and 

u(k)   =   Frx(k) + Zrv(k) 

yields 



x(k + l)   =   [A + BFr + LC + LDFr]x(k) + [BZr + LDZr}v(k)-Ly(k).      (20) 

Equation 20 can be rewritten for any time step in the future as 

x(k + l + l)   =   F(l)x(k + l) + G(l)v(k + l) + H{l)y(k + l) (21) 

where 

I   =   0...P-1 

F(0)   =   A + BFr + LC + LDFr 

F(m)   =   A + BFr ,m = l...l 

G(l)   =   BZr + LDZr 

(22) 

(23) 

H{0)   =   -L 

H{m)   =   0 , m = 1.. .1 (24) 

The reason that H{m) = 0 is because there are no future measured outputs, only predictions. Now 

it is possible to arrange equations 21,22,23 and 24 to produce a vector of future predicted states. At 

this point the assumption that D is zero for all physical systems is imposed. Rewriting Equation 21 
' x{k + l) \ 

: I = Fx(k) + Gv(k) + G^v^ik) + Hy(k) (25) 

where 

F   = 

x(k+p) 

F(0) 
F(1)F(0) 

n FU) 
j=p~i 

G   = 

- G 0 
F(1)G G 

n m G n m G      : 
]=r 3=r 

n m G ft   F(j) G   ■■• 
- j=p-i j=p-i 

0 
0 

G 

n m 
j=p-i 

G 



G°°   = 

H   = 

G 
F(r + 1)G 
r+l n m 

j=r+2 

r+l n m 
j=p~i 

0 
G 

G       F(r + 2)G 

G 
r+2 n m 

j=p-i 
G 

H(0) 
F(1)H(0) 

U(0) 

0 
0 

n n?) 
j=p-i 

G 

n TO 
J=P-I 

From Equation 12, any future control input is written as 

u(k + l)   =   FPx(A; + 0 + Zrv{k + /) 

(26) 

(27) 

*   =   0...g-l 

it(fc + I) can now be written in vector form as 
u(k) 

where 

Fu   = 

} = Fux(k) + Guv(k) + G^v°°(k) + Huy(k) 

^ u{k + q-l)  ^ 

Fr 

FrF(0) 

Fr n FU) 
i=9-2 

(28) 
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G,, 

G„ 

Hu   — 

FrG 
0 

Fr ft TO G   Fr ft TO 

Fr ft TO 
j=r—l 

G   Fr ft    TO 
j=r-l 

Fr ft TO 
_j=g-2 

G   Fr ft TO 
_j=g-2 

Zjy 0 
FrG ZJy 

FrF(r + 1)G FrG 

T-+1 

n TO G   Fr 

r+2 

n TO 
_j=<Z-2           J [j=9-2           J 

0 
FrH(0) 

H(0) n TO 
i=g-2 J 

From the cost function, Equation 3, a method for determining Au is required. Letting 

0 
0 

G   ■■■ 

G 

G   •••   R 

G   •■•   Fr 

FrG 

n TO 
;=<z-2 

0 

0 
0 
0 

n TO 

G 

G 

Ait(fc) = u(ife) - u(fc - 1) 

the following relationships are formed. 
Au(fc) 

Au(/c+-g-l) 

(29) 

(30) 

> = FAx(k) + GAv(k) + G%v°°(k) + HAy(k) + Iu{k - 1)        (31) 
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where 

FA   = Fr 

Fr 

FrF(0) - Fr 

FrF(l)F(0) - FrF(0) 

ft TO- ft TO 
j=q-3 j=q-& 

ft TO-  ft TO 
j=q-2 j=q-3 

FrF(l)G - FrG 

0 
0 
0 

ft TO- ft F(j) 
j=i—2 j=i—3 

G 

GA   = ft TO-  ft TO 
j=r—1 j=r—2 

G XVCT — <^r 

ft TO- ft TO 
j=q-3 3=q-4: 

G   ••■   Fr n TO- n TO 
j=g-3 j=g-4 

G 

GT 

#A     = 

ft TO-  ft TO 
;=5-2 j=q-3 

0 

FrF(r + 1)G - FrG 

G   ■ 

Fr 

r+l                      r+1 
n TO- n TO 

j=q-2                 j=q-3 
G   • 

0 
Frtf(0) 

FPF(0)fT(0) - FrH(0) 

ft TO- ft TO 
_j=g-2            i=9-3 

#(0) 

12 

n TO- n TO 
j=g-2 j=g-3 

0 

0 
0 
0 

n TO- ft TO 
j=g-2 j=g-3 

G 

G 

(32) 



I = 

-I 
0 

Note, these prediction matrices are based on the absolute control input, u, being input into the plant. 

Previous works [4] and [6], have modified the plant to accept incremental control inputs, Au. 

2.2.4   Quadratic Programing Problem 

To solve the cost function of Equation 3, MATLAB'S quadratic programing algorithm, qp.m, 

was used. The routine is based upon the following relationship 

J(x)   =   min <{ -x Hx + / x (33) 

subject to Ax   <   b 

The equations for the state predictions, incremental control inputs and system constraints must be 

rewritten to agree with the format of Equation 33. A new vector reference signal, v(k), is defined 

in Equation 34 and is the vector over which the cost function is minimized. 

v{k) = [ v(k)T   v(k + l)T   ••■   v(k + r-l)Tf (34) 

2.2.4.1   Quadratic Programing Cost Function 

Expanding the MEVIO cost function of Equation 3 and using the state prediction matrices 

J(Jfe) = v{k)TSv{k) + [ x(k)T   y{k)T   v^ikf   s(k)T ] Tv(k)+ind (35) 

where S, T and ind are given by 

S = G C RyCG + G^RUGA 

T = 2 

CF 
CH 

CG°° 

—Ipq 

RyCG+ 2 

FA 

?* G~oo 
A 

0 

RUGA 

(36) 

(37) 

ind   =    (PxW+G^v^ + Hyikf)   CTRyC (Px(k) + G^v00 + Hy(kfj + (38) 

(PAx(k) + G%v°° + HAy(k)YcTRaC (PAx(k) + G%v°° + HAy(kfj + 

s(k)TRy \s(k) - 2C (Px(k) + Hy(k) + G°°vc 
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Since ind is independent of the optimization variable v, it was neglected. Additionally, C, Ry, and 

Ru are defined as 

C   =   diag(C,...,C) (39) 

Ry      =      diag (Ry,...,Ry) (40) 

Ru   =   diag(Äu,...,Äu) (41) 

The far future reference input, v°°, is calculated using Lemma 5.1 in [6]. 
(p-r) 

CJ2(A + BFr)J~l BZrv°° = s°° (42) 

The purpose of calculating v°° is discussed in the Pole Placement for System Stability and Steady 

State Error section. 

2.2.4.2   Quadratic Programing Constraints 

Ideally there would be unlimited control power and the system would be able to handle un- 

limited outputs. However, all physical systems have limits on their control inputs and occasionally 

they have implied limits on the system outputs. For aerospace systems control inputs are limited 

to their maximum and minimum position limits as well as maximum and minimum rates. Various 

outputs may also be limited based upon potential damage to the system or exceeding human factor 

constraints. It is the ability of MPC strategy to handle system constraints within the control problem 

which makes it appealing for highly dynamic systems. System constraints are expressed across the 

control and prediction horizons as 

&umin(k + i)   <   Au(k + i) < Aumax(k + i) 

i   =   0...q-l 

Umin(k + i)   <   u(k + i) < umax(k + i) (43) 

i   =   0...q-l 

%min\r>< T 1)     S     XyK -\- I) <■ Xmax{K + 1) 
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i   =   l...p 

where q and p are the control and prediction horizons.  System outputs can be determined by a 

linear combination of states using Equation 10, thereby allowing output constraints as well as state 

constraints. 

Defining the system constraints to match MATLAB'S quadratic programing format in Equation 

33, the following relationships are constructed [4] 

LxAü(k)   <   l(k) 

Nv 

where 

Mßü{k)   <   m(k) 

x(k + l) 

<   n(k) 

x(k+p) 

(44) 

and 

Lx   = 

Mß   = 

Nu   = 
IK,P 

l(k)   = 
^■^"max 

m{k)   = Umin 

Umax 

ra(fc)   = 
%min 

%max 

(45) 

(46) 

Using the prediction matrices of Equations 26, 29, and 32 the following relationships are defined. 

Dv(k)    <   Ec(k) 

L\GA 

D   = 

E 

MßGu 

NUG 

-LXFA -LXG% -LXHA -LX I 0 0 
-M^Fu -MßG™ -MßHu 0 0/0 
-NVF    -N„G°°     -NVH       0      0   0/ 

(47) 
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c(jfe)   =    [x(k)T   ^°°WT   y(k)T   u(k-l)T   l{k)T   m(k)T   n(k)Tf 

2.3 Pole Placement for System Stability and Steady State Error 

Recent work [4] and [6] has focused on placing the poles of observer and state estimator 

controllers .Equations 15 and 17, at the origin for discrete systems. This has assured mathematically 

that the system would reach a desired setpoint in a finite amount of time. However, this assumes 

that all states are modeled and the plant is an LTI model. Using real systems, not all the states 

are modeled, noise sources introduce error and generally systems are nonlinear and time varying. 

Because of these potential problems, controller pole placement was relaxed from the placement of 

discrete poles at the origin (continuous at -co) to within the unit circle (stable). Because of this 

relaxation, it was not possible to guarantee trajectory tracking of a LTI model within a finite amount 

of time. However it was mathematically possible to reach a window around the tracking point in a 

finite amount of time. 

From reference [6], Lemma 5.1, a relationship between the far future reference input, v°°, and 

the far future setpoint trajectory, s°°, is given by 

(48) 
2K 

C^2 (A + BFrY'1 BZrV™ = S°°. 
3=1 

This is the result that was used in Equation 42 to solve for v°°. Equation 48 is based upon the poles 

of A + BFr and A + LC being zero. However in this research the discrete poles were simply made 

stable. Therefore it was necessary to construct a relationship between controller pole placement, 

prediction/control horizons, and setpoint error. Starting with Equation 5.36 of reference [6] (shown 

in Equation 49), it is possible to determine the error of the stable system. 
r XAK) x(k + l) 

x(k +1) 
A + BFr     -LC 

0 A + LC 
i 

E 
3=1 

A + BFr     -LC 
0 A + LC 

x{k) 
x\k) 

3-1 BZr 

0 
v(k + l-j) (49) 

x (k +1)   =   Future Estimated States 
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x{k + l)   =   x{k + l)-x(k + l) (50) 

For a system where the controller poles are at the origin and letting / > 2K [6] yields 

A + BFr     —LC _ „ ,<-,, 
0 A + LC\     _U- ^   J 

Knowing the far future setpoint trajectory, s°°, the far future reference input is calculated using 

Equation 48. For a simply stable system 

' A + BFr     -LC   1' „ 
0 A + LC \     "*   U 

as (52) 

I     —>     CO. 

Since it is impractical to let I —»• oo, a heuristic approach to determining the error using a first order 

SISO system was derived and then applied to the MEMO system. 

First recall the following definitions. 

p   =   prediction horizon 

q   =   control horizon 

r   =   optimization horizon (53) 

Ts   =   Discrete Time Step 

p   =   max(p,g) 

Also let the dynamic setpoint trajectory be fixed to s°° at the end of the optimization horizon, r. 

Letting 

l = p-r (54) 

provides I time steps for the error to reach a finite value. Let the error be defined as 

err = 1 — w (55) 

where 

w = User defined Window of Steady State Error. (56) 
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For a first order continuous system of the form 

Vc H(s) = -^- (57) 
S+Pc 

subject to a step input the error is defined as 

\Z,rprp          t> 
—   oPct (58) 

Setting the time t = l*Ts and solving for the continuous pole 

Now recalling the relationship between continuous and discrete pole locations 

ft = ^ (60) 

and combining with Equation 59, a relationship between pole placement, prediction/control hori- 

zons, and setpoint error is found 

In (1 - w)          In (z) 
ITS                  Ts 

tad-«.) 
z   —   e    i (61) 

zl   =   (l-w) 

which is analogous to the MEMO Equation 52. As an example z = 0.82 given w = 98% and I — 20. 

For the MIMO system Equation 61 was used as a rough guide to place the poles of A + BFr and 

A + LC such that 

Fri   =   Initial Pole Location or Pole closest to Unit Circle for A + BFr 

Fri   =   (l-u>Fr)« (62) 

Li   =   Initial Pole Location or Pole closest to Unit Circle for A + LC 

Li   =    (l-wL)«. (63) 

All other controller poles were then placed closer to the origin than their respective starting locations. 

The placement of these poles was accomplished using Ackerman's Formula. 
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2.4 Tuning Parameters 

Having established the mathematical development of the MPC strategy it is beneficial to list 

the various tuning parameters in Table 1. 

Table 1. Tuning Parameters 

Tuning Parameter Description 

Ru Control Input Weighting Matrix 
Ry Tracking Error Weighting Matrix 
A + BFr Pole locations State Gains of Inner Feedback Loop 
A + LC Pole locations State Estimator of Inner Feedback Loop 

Ts Discrete Time Step 

p,q,r Prediction, Control and Optimation Horizons 
l,m,n Control Rate and Limit Constraints and System Constraints 
s Commanded Trajectory 

Currently specific relationships between system tracking and required control power are not 

developed in terms of these tuning parameters. Relationships are generally developed using a heuris- 

tic approach and numerous simulations. 
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Chapter 3 - Plant Models, Trajectories and MPC State Space 

Formulation 

3.1 F-16 Model 

3.1.1 Linear Model 

Generation of linear models was performed using various MATLAB function calls and script 

files listed in Appendix A. Several of these script files and function calls were based upon the 

FORTRAN code developed by Dr. B.L. Stevens [12] and transcribed into MATLAB format by Dr. 

Brad Liebst and several of his students [8] . A new front end script file, Modgen.m in Appendix 

A, was written to automate the generation of linear models. Modgen.m requires a user defined 

input matrix given in the script file casel.m, whose rows correspond to different flight conditions 

at which linear models are to be generated. The four elements in each row correspond to Mach 

number, bank angle in degrees, rate of climb in ft/'sec and altitude in ft. Modgen.m then calls the 

MATLAB function trimmer.m [3], which calculates the control inputs necessary to make the state 

derivatives zero. Next, Modgen.m calls jacob.m [2] , which calculates the linearized state space 

model based upon the trimmed flight condition from trimmerm. Finally Modgen.m outputs the 

state space matrices and equilibrium values into a file unique to the specified flight condition. Both 

trimmerm and jacob.m are designed to use any nonlinear aircraft model obeying the equation 

x = f(x,u). (64) 

3.1.2 F-16 Nonlinear Model 

The nonlinear MATLAB function subf 16a.m [13], provides the x vector specified in Equation 

64. The code utilizes extensive look up tables based upon wind-tunnel data developed by NASA- 

Langley[12, 124] . The nonlinear model currently has time invariant physical properties which are 
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listed in Table 2. The actuator physical limits and rates are listed in Table 3. The nonlinear model, 

subfl6a.m, has limitations which are important to remember when performing simulations. These 

limitations, listed in Table 4, are based upon the bounds of the wind tunnel data which was collected 

by NASA-Langley. Control input rate and position constraints, vectors I and m, are taken from the 

information in Table 3. 

Table 2. F-16 Physical Properties 

Property Value 

Weight 20,500 lbs 
Moment of Inertia, Jxx 9,496 5%*/^ 
Moment of Inertia, Jyy 55,8U Slug * ftz 

Moment of Inertia, Jzz 63,100 Slug * fiz 

Moment of Inertia, Jxz 982 Slug * ft1 

Span 30.0 ft 
Area 300 ft1 

Mean Aerodyanmic Center 11.32 ft 

Table 3. Control Actuator Data 

Actuator Deflection Limit Rate Limit Time Constant 

Elevator ±25.0° 60°/sec 0.0495 sec lag 
Ailerons ±21.5° 80°/sec 0.0495 sec lag 
Rudder ±30.0° 120°/sec 0.0495 sec lag 
Throttle No Afterburner 0... 0.7699 100^ 0.0 sec lag 
Throttle, With Afterburner 0.77... 1.0 ioo£ 0.0 sec lag 

Table 4. Nonlinear F-16 Model Limitations 

Parameter Minimum Limit Maximum Limit 

Throttle Position 0.0 1.0 
Altitude, h 0 ft 50,000 ft 
Mach Number 0.0 -0.6 
Angle of Attack, a -10° 45° 
Angle of Side Slip, ß -30° -30° 

The throttle rate limit, AuT, was set to an arbitrary large value, 100^. This was done to 

simulate a near instantaneous throttle input response. However, the engine dynamics are modeled 
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with an appropriate delay, so that there is not an instantaneous change in thrust. Note that the throttle 

input, UT, is unitless as it represents a percentage of engine thrust. 

3.1.3   Plant Block Diagrams 

In order to simplify the controller block diagram and assist in the modular design, the plant 

model was grouped into a single SlMULlNK subsystem. A specific plant, linear or nonlinear, with 

the correct number of inputs and outputs could easily be placed into the complete MPC controller. 

3.1.3.1   F-16 Linear Block Diagram 

Figure 1 shows the linear model configuration. It is a standard state space configuration except 

that in the SIMULINK Discrete Plant block C = I and D = 0. D was set to zero because physical 

systems tend to have an inherent delay in any input to output. Also the generation of the linear 

models by trimmer.m calculates D = 0 for states which do not involve acceleration. Setting C = I 

provides the designer the flexibility of calculating the outputs through a linear combination of the 

states, x, by using SIMULINK matrix gain blocks, K. These outputs are then multiplexed in the 

order in which the MPC controller is designed. 
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in 1 

x(n+1)=Ax(n)+Bu(n) 
y(n)=Cx(n)+Du(n) 

Discrete Plant 

►  K - 

bank 

-  K - 

all: 

K 

Kvel 

K 

beta 

K 

qdot 

Mux 

out 1 

Mux 

Figure 1. F-16 Linear Model Block Diagram 

3.1.3.2   F-16 Nonlinear Block Diagram 

Figure 2 shows the SIMULINK block diagram used for the nonlinear model. 
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y(n)=Cx(n)+Du(n) 
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Unit Input Delay 

Figure 2. Nonlinear F-16 Model Block Diagram 

The input to this block diagram is the output of the controller, u, which is fed into a zero order 

hold. The zero order hold ensures that the continuous integration performed by the nonlinear plant 

is fed a discrete input for each time step, Ts. Since u is a perturbation signal and subf 16a.m operates 

on total inputs, the equilibrium input value, urj, is added to u before being input into the MATLAB 

function block. The heart of this diagram is the MATLAB function block where the nonlinear state 

derivatives are calculated using subf 16a.m. The state derivatives are then integrated, in the integra- 

tor block -, using a MATLAB proprietary 5*^ order Runge Kutta equation solver. The total states are 

then fed back into the MATLAB function block. The initial conditions, in the integrator block, are 
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set to the equilibrium state values, xeqall, calculated by trimmer.m. The four graphical output blocks 

xd long, xd lat, x long and x lot are used to display the lateral and longitudinal states during sim- 

ulations. The specific lateral and longitudinal states are selected using the matrix gain blocks, K, 

preceding these graphical blocks. Note that the longitudinal state outputs are perturbation outputs 

since xeqall was subtracted in the Sum3 block. Figure 2 also includes a state feedback block, Kfeed. 

This block was included in the design to allow for continuous stabilizing feedback but was set to 

zero in this thesis. As in the linear block diagram, Figure 1, the specific outputs were calculated by 

a linear combination of the states determined by the SIMULINK matrix gain blocks Phi, alt, Veloc- 

ity, Beta and Thetadot. These outputs were then multiplexed to provide the correct output vector, 

y, to the MPC controller. Finally the unit delay block preceding the output provides the controller 

with the current output vector while a new vector is being calculated by the continuous integration. 

3.1.4  Initial Conditions 

The initial conditions, Table 5, for all the simulations were chosen to simulate realistic flight 

conditions. A clean F-16 has an optimum climb airspeed of w 400 knots. Since the nonlinear model 

is limited to a Mach number of « 0.6, a low starting altitude was chosen to achieve an airspeed close 

to 400 knots. 

Table 5. Initial Flight Conditions 

Parameter Value 
Mach 0.6 
Altitude, h 100 ft 
\felocity 390.6 knots 669.7 ft/sec 
Bank Angle, <f> 0° 
Rate of Climb, h 0 ft/sec 
C.G. Location 30%mac 

The control input equilibrium values are given in Equation 65 for a 30% e.g. location. 

«o [ 0.262   -1.544°   0°   0° ]' (65) 
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where 

u 
rp 

=      [ UT     Uel     Uail     Urud  ] 

Using Modgen.m, linear models were generated using the initial conditions in Table 5 and varying 

h. The corresponding eigenvalues are given in Table 6. 

Table 6. Eigenvalues at Mach = 0.6, Alt = 100ft, Bank Angle = 0 deg, CG. = 0.30 

Longitudinal* 

Rate of Climb h = 0 ft/sec h = 100 ft/sec h = 200 ft/sec h = 300 ft/sec 
Short Period -1.59 ±1.99« -1.59 ±1.99« -1.59 ±1.99« -1.59 ±1.99« 
Phugoid -0.013 ± 0.055« -0.0091 ± 0.053z -0.0056 ± 0.051« -0.0021 ± 0.047« 
Engine -1.0 -1.0 -1.0 -5.0 
Lateral* 
Dutch Roll -0.54 ±4.12« -0.54 ± 4.12« -0.55 ±4.11« -0.55 ±4.10« 
Roll -4.96 -4.96 -4.97 -4.98 
Spiral -0.0104 -0.0033 ±0.0039 ±0.012 

* Eigenvalues are in continuous time with units rad/sec 

Note that the eigenvalues vary slightly as h varies. However at h = 300 ft /sec, there is a 

sudden change in the engine dynamics. This represents a transition from military power to after- 

burner. This discrete jump occurs in the nonlinear model, subflöa.m, when the throttle input is 0.77 

or greater. To avoid problems associated with this discrete jump two additional constraints were 

placed upon the simulations. First, the throttle was limited to uymaa: = 0.765. Second, the altitude 

trajectories were designed for h < 290 ft/sec based upon the results of Table 7. 

Table 7. Throttle Position for Different h Values 

CG. = 30% 
h = 290 ft/sec 
h = 300 ft/sec 

Uthrotle = 0.764 

Uthrotle = 0.774 

3.1.5   Actuator Constraints 

As discussed, the throttle actuator was limited to urmaa! = 0.765. The rudder was also limited 

due to the initial flight condition. In actual flight, the rudder is seldom used beyond a degree or 
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two at flight conditions other than landing configurations. Because this is an up and away flight 

condition (i.e. no flaps, no gear, much greater than \g stall velocity), the rudder was limited to 

±0.5°. Table 8 shows the actual constraints which were used in simulations. 

Table 8. MPC Actuator Constraints 

Actuator Deflection Limit Rate Limit Time Constant 

Elevator ±25.0° 60°/sec 0.0495 sec lag 
Ailerons ±21.5° 80°/sec 0.0495 sec lag 
Rudder ±0.5° 120°/sec 0.0495 sec lag 
Throttle No Afterburner 0... 0.765 100^ 0.0 sec lag 

Since the controller is designed to operate on perturbation inputs, it is necessary to redefine 

the constraints in terms of the physical limits and equilibrium values. 

mn =   un UQ 

mmin     =    Umin — UQ (66) 

Since the equilibrium condition implies ü = 0, there was no modification of the controller input 

rate limits, lmax or lmin. 

3.2 Dynamic Trajectories 

The MPC controller setup that was used in this thesis assumes that there was a future control 

input, v°°, which was found by a constant future setpoint trajectory s°°. In past research [4] and 

[6], this future setpoint trajectory was simply the step input that was commanded. However, for a 

dynamic trajectory a method of determining s°° is required. The method chosen was to let s°° = 

constant after the optimization horizon, r, has passed. 

s°°(l)   =   s(k + r) (67) 

r+1   <   l<p 

Figure 3 displays a graphical based upon 

r   =   10 
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Figure 3. Optimization and Far Future Trajectory 

The dynamic trajectories are generated at each time step using the MATLAB function file 

trajpnt.m. Trajpnt.m is called during the optimization at each time step. It is envisioned that instead 

of a prescribed trajectory which is known at the start of the simulation, pilot modeled inputs could 

be substituted for trajpnt.m. 

3.2.1   Bank Angle 

Two different trajectories were used for the desired dynamic bank angle trajectories. The first 

was a simple half sine wave, shown in Figure 4, according to 

+ s + .. 
(69) (t)    =    (^ (si* (£*)),   t<t. 

{ 0, t>ts 
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(j>max   =   Maximum Desired Bank Angle. 

Since roll rate, <f>, is strongly coupled with aileron input [9, Chapter 5] and it is desirable to generate 

smooth control inputs, a second trajectory where the starting and ending derivatives are zero was 

produced using a cosine wave, as shown in Equation 70 and Figure 5: 

= { *Tr(i-co*(gt)), t<t„ 
0, t  > tss 

**(*) (70) 

Time In Seconds 

Figure 4. Bank Angle Trajectory - Half Sine 
Wave, tss = lOsec 

Figure 5. Bank Angle Trajectory - Full Co- 
sine Wave, tss = lOsec 

3.2.2  Altitude 

For altitude transitions a smooth trajectory was also desired. Modifying Equation 70, the alti- 

tude equation is given by and shown in Figure 6: 

r Y(I-^(^)), t<tss Salt(t)     = 
''"max j 

hmax   =   Maximum Desired Altitude. 

hr, t ^ tss 
(71) 
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Figure 6. Altitude Trajectory - Half Cosine Wave, tss = 20sec 

3.3 MPC State Space Formulation 

The following three sections describe in detail the block diagrams, controller pole placement 

technique and the adaptive constraint techniques utilized in the simulations. 

3.3.1   Block Diagrams 

The entire controller incorporating the plant is shown in the SIMULINK block diagram of Figure 

7: 

30 



Clock 

& 
Ts 

appa 

EH 
xi 

H— 
ItepfieJ- 

kacf16 

fr 
6- 

ToWorkspace 

fc[~p   I      J MATLABI JT1  .       um 
^JT-|     ' Functon T_l M±_T 

Zero-Order      Optimizer 
Hold 

>(n+1)=A<MtBu(n) 
y(n)=Cx(n)+Du(n) 

Unit Delaiy. u(n~1) 

Input signal |—, 

uout 

L^ 

youtlin 

Linear Oirtpud 

% 

ydot 

Nonlinear States 

youtnlin 

Output 

Figure 7. Model Predictive Control - Overall Simulink Block Diagram 

The block diagram is divided into five main areas. The first is the actual plant. Shown in the 

loop is the SIMULINK icon Non Linear, which contains the nonlinear F-16 model. As discussed, 

any linear or nonlinear plant can be substituted there provided the individual elements of the plant 

31 



output vector correspond to the desired trajectory. As configured, the plant output vector is 

y[k)=[<i>   h   V   ß   qf (72) 

where units used are degrees, feet and seconds. The output vector in Equation 72 can be changed. 

If it is changed, the corresponding 'desired trajectory' vector, s, must also be changed accordingly 

in the MATLAB code trajpnt.m. 

Continuing around the loop from the plant, the state estimator is reached. The estimator design 

is based upon the results of Chapter 2. The estimator operates on the plant outputs, y, and the plant 

inputs, u. Its state space representation is given by 

G = 
A+BF+LC 

I 
B 
0      0 

(73) 

Note the gains for A+BFr and A+LC were chosen based upon a linearized model at the operating 

point described in Table 5. Figure 8 shows the block diagram used to realize Equation 73. The three 

SIMULINK input blocks in_l, in_2 and in_3 correspond to a vector of constants, the control input 

vector [ u y ] and a user definable gain scheduling parameter. The two MATLAB function blocks, 

A Matrix and B Matrix, call the MATLAB functions Amatrix.m and Bmatrix.m. These function calls 

are used to select the LTI state space matrices A, B, C, Fr and L. The output of the state estimator 

is the vector x. 
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Figure 8. Simulink State Estimator Block Diagram 

The controller was designed with the flexibility to perform on-line gain scheduling based upon 

a user defined input parameter. Examples of these parameters could include y, y, u or others. When- 

ever a linearized state space matrix or prediction matrix is required by any portion of the MPC con- 

troller, a MATLAB function call is made to matget.m. Currently matget.m returns the LTI state space 

matrices and prediction matrices which were calculated based upon the initial conditions of Table 5. 

The next point in the loop is the gain block, Fr, for the estimated states, x. The MATLAB func- 

tion block in Figure 9 calls the routine Frwhich.m, which determines the gain Fr through matget.m. 

Then the estimated states, x, are multiplied by Fr and are output to the summing block preceding 

the plant input. The three input blocks, in_l, in_2 and in_3, correspond to a vector of constants, 

the state estimates, x, and a gain scheduling parameter. 
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Figure 9. State Feedback Gains - Simulink Block Diagram 

The outputs of the plant, state estimator, the previous control input, u(k — l), and user defined 

control parameter are then fed into the Optimizer block. The zero order hold is placed at the input 

of the optimizer to ensure that the optimizer works on a discrete basis. The output of the optimizer 

is the reference signal v. This is fed into the summing block and a perturbation control signal is fed 

into the plant. The code, optimize.m in Appendix A, calls matget.m to determine the ITI state space 

and prediction matrices. Also, adaptive constraint techniques are employed within optimize.m, if 

selected. 

The fifth section of Figure 7, located at the upper left hand corner, is comprised of the various 

constants used throughout the MPC controller. These constants are multiplexed into a vector and 

then distributed to the various MPC controller sections. 
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3.3.2  Pole Placement Technique 

As presented in Chapter 2, controller pole placement was not restricted to the origin in this 

thesis. Using Ackerman's Formula [5, page 497] a pole placement routine was written, gains3.m, 

listed in Appendix A. The routine requires starting locations, Fn and Li, for poles closest to the unit 

circle of A + BFTi and A + LC and the discrete time step, Ts. The routine then generates a vector 

of pole locations in the continuous domain where the bounds are given by Equation 74. The vector 

is the length of the number of controller states, K. 

In(^) 

\p 
In (PerFTi) 

(74) 

Per   =   User Defined Percentage 

Once the gain matrices, Fr and L, have been generated, the discrete pole locations are recomputed. 

If the pole closet to the unit circle is greater than FTi or Li, the corresponding starting value is 

multiplied by the percentage R and the appropriate gain matrix is recalculated. For this thesis Per 

and R equalled 95% and 98%. 

3.3.3   Control Input Constraint Weighting Matrices 

In Chapter 2 the control input constraint weighting matrices were defined as shown in Equation 

75. 

(75) 

However, for the simulations Equation 76 lists the actual values assigned to these weighting matri- 

Lx = 

M^ = 

N„ = —IK,P 

IK,P 

ces. 

Lx   = -%£   %(g-i) 
Ite      °€,(?-i) 
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M^   = ~h,i Of,(?-i) 
%£ °*,(9-l)  J 

(76) 

JV„   =   [], Null Matrix 

By choosing Nv to be a null matrix system states are unconstrained. The structure of L\ and Mß 

places constraints on the control inputs at the time step, A;, but during the optimization problem future 

control inputs of k +1 for / = 1... q are unconstrained. The choice of these constraint matrices was 

designed to provide an aggressive control scheme for a highly maneuverable aircraft. 

3.3.4   Adaptive Constraint Techniques 

Two adaptive constraint techniques were derived to assist the optimization routine in finding 

the global minimum at each time step. Initial simulations involving the LTI model showed a rela- 

tionship between roll rate, (j>, and aileron input. This agreed with conventional thinking [9, 75-77] 

and for a simplified model the relationship between roll rate, <j), and perturbation aileron input, ASa, 

is given by [9, 154, Equation 5.6] 

'<f> = ^^Sa (77) 
Lp 

Using a linear simulation, bank angle was commanded to follow a sine wave input as described in 

Equation 69. The resulting bank angle output, <j)(t), was differentiated and plotted against aileron 

control inputs. A linear fit was applied to the data and Equation 78 was the result. 

'<t>   =     -le-T^M,,   ua = A6a (78) 

ua   =   -0.06</> 

In the code, optimize.m, <j) was approximated by a first order finite difference method. Also an 

estimated error bank rate and an approximated rate of climb were all calculated as given in Equation 

79. 

•      =    Stj, (A; + 1) - S0 (k) 

k   -    *(fc + 1)-*W (79) 
J-s 
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hp   = 
sh (k + 1) - sh (k) 

The adaptive aileron constraints were then calculated based upon three separate conditions listed in 

Table 9. 

Table 9. Adaptive Aileron Selection Criteria 

Case hp 4>p Equation Number 

1 0 0 80 
2 0 7^0 81 
3 ^0 7^0 82 

Based upon the conditions of the three cases, new maximum and minimum actuator constraint 

limits are defined. In Equations 80 through 82, the prime, m'maXa and mmiria, notation indicates 

that a new value for the constraint has been assigned. The maximum and minimum values mmaXa 

and mmina, correspond to the original actuator maximum and minimum constraint values. 

m„ 

m„ 

-0.06 ■       0.25 
—Z 4>e + -77^mmaxa 

-0.06 
4>e + 

100 
0.25 
100' 

-rrir. (80) 

m„ 

m„ 

0 5 
ta   =   -0.06<^p + —mmaX( 

0 5 
2a    =   -0.06(f>p + —mminc (81) 

m„ 

mr 

-0.06 •       0.5 
=   -0.06<f>p -\ — (j)e + 77^mmaXa 2    re     100 

-0.06.,       0.5 
-mr, (82) %a     =     -0.06(f)p + —^—<t>e + yJQ"*rmna 

The 0.5% buffer was added to prevent over constraining the optimization problem. 

The elevator adaptive constraint technique was derived in a similar manner. The altitude output, 

h, was commanded to follow a cosine trajectory as defined in Equation 71. The second derivative 

of h{t) was then taken and plotted against the elevator input signal and a linear fit of the data yielded 

37 



the following 

uel = -S-^. (83) 

A 2% to 5% buffer was then added to this heuristic equation to derive the following adaptive elevator 

constraints 

h      2.0 
 1 ■ 
45     100' 
h      2.0 

45 ~ 100' 

The buffer of 2% to 5% was selected for two specific reasons. First there was no consideration of 

mmaxH     — 45 "*" -iQQrnmaxel 

h 2.0 

throttle input in deriving Equation 83. This introduces error into the assumption that h is dependent 

solely on elevator deflection since classical performance techniques have shown that h is heavily 

dependent upon excess thrust, thus implying that throttle inputs are important. The second reason for 

the buffer was because there was no consideration of required elevator during bank angle changes. 

One potential fix to the neglected bank angle affect is to derive a linear relationship between bank 

angle and elevator input and then add that relationship to Equation 83. 

3.4 Operating Envelope and F-16 Views 

In Appendix C are figures of the F-16 operating envelope and the planform and longitudinal 

views of the F-16 [1]. The planform and longitudinal views of the F-16 were included merely as a 

reference for the reader. The operating envelope shows the specific excess power, Ps, curves for a 

clean F-16 at military power. This chart was included to show that the initial conditions provide a 

point which is well within the operating envelope of the F-16. This is important as the trajectories 

designed for this thesis attempted to simulate realistic conditions showing that the MPC strategy is 

viable for an aerospace system. If the initial conditions were on the edge of the operating envelope, 

the realism of the simulations would be in question. Note that for a steady level turn of 60° (2 g's) 

at a Mach number of 0.6, Ps is almost 300 ft/sec. This implies that for constant altitude bank 
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angle trajectories where the bank angle does not exceed 60°, the throttle should never be required 

to exceed the 0.77 setting corresponding to military power. 
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Chapter 4 - Results of Simulations 

Before presenting the results of the simulations it is important to understand three basic con- 

cepts. First, the MPC controller consisting of the MIMO cost function, state prediction matrices 

and system constraints used for all simulations, was designed using an LTIF-16 model at the initial 

conditions presented in Chapter 3. Results which are described as linear in nature imply that the 

plant of the entire system was the same LTI F-16 model used for the construction of the MPC con- 

troller. Simulation results which are described as nonlinear, imply that the plant of the system is the 

nonlinear F-16 model shown in Chapter 3 using the MATLAB code subfl6.m. 

4.1 Initial Validation 

Before attempting to use a new controller on a new aircraft model, a validation of the MPC 

controller design and dynamic trajectory tracking was required. As much of the ground work nec- 

essary for this thesis was completed by reference [4], the LTI model used in that thesis of the High 

Angle Research Vehicle (HARV) was used to validate the MPC controller. For a complete descrip- 

tion of the HARV model, operating point, scaled inputs and scaled outputs, the reader is referred to 

reference [4] . The state space discrete realization is generated by a MATLAB script file, harv.m. 

The state space matrices generated are shown in Appendix C. Equation 85 lists the order of states, 

inputs and outputs with input descriptions identified in Table 10. 

Xlong    =    [VT    a   q   0   h] 

Ulong     =     [ STVS    &AS    &SS    &LES    ^TES    &T ] (85) 

y     =     [ VT    7     0 ] 
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Table 10. Validation Control Input Definitions 

Control Input Description 

STVS Symmetric Thrust Vectoring 

8AS Symmetric Aileron 

6ss Symmetric Stabilator 

SLES Symmetric Leading Edge Flap 

STES Symmetric Trailing Edge Flap 
8T Throttle 

Equation 86 describes the trajectory commanded for the MPC controller validation. 

( 0.6sin (2&t\ ,   tss < lOsec 

I   0 tss > lOsec 
s = 1.0 (l - cos fc*)) .   Us < 20sec 

0 tss > 20sec 
0 

(86) 

As seen in Figure 10 the simulation yielded the expected sine and cosine shapes of Equation 86. 

Figures 11 and 12 show the corresponding control inputs. From Reference [4] , the position con- 

straint limits of the thrust vectoring, 6TVS> were set to ±1 unit. Figure 11 shows that 6Tvs is an 

active constraint. Figure 12 also shows an active rate constraint on Leading Edge flaps, SLES, since 

its rate limit was set to ±0.5^*^ in reference [4] . These active constraints serve to validate the 

correct functioning of the MPC controller design. 

i 
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k" 
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Figure 10. Longitudinal State Outputs of LTIHARV Model using Dynamic Trajectories 
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Figure 11. Control Inputs (1-3) of LTIHARV 
Model using Dynamic Trajectories 

Figure 12. Control Inputs (4-6) of LTI HARV 
Model using Dynamic Trajectories 

4.2 Linear Model Results 

Using the discrete pole placement technique described in Chapter 3, a sample of the pole lo- 

cations using FTi = 0.75 is giv.en in Equation 87. Descriptions of simulations list the starting pole 

locations FTi and Li. 

eig(A + BFr)   =    [ 0.750   0.746   0.742   0.737   0.733   0.729   0.725   ...        (87) 

0.721   0.717   0.713 ]T 

Equation 88 provides the discrete time step, weighting matrices and output vector description which 

were used for all linear simulations. The aircraft model trim conditions were given in Chapter 3, 

Table 5, along with the control input equilibrium values in Equation 65. 

Ts   =   0.1 sec 
" 0.1   0   0     0 

(88) 

0.1   0   0     0 

Ru   — 
0      10     0 
0      0   10   0 
0      0   0     100 

r loo o     o 
Ry        = 0       1000   0 

0       0         10000 

y(k)   =    [ <f>   h   V ]T 
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4.2.1   Bank Angle Response 

Seven separate cases, listed in Table 11, were simulated using the linear model to characterize 

the system response to different bank angle commanded trajectories. Cases 1 and 2 served to validate 

the assumption presented in Chapter 3 that rudder deflection constraints may be severely limited 

without sacrificing tracking, provided a landing task is not being simulated. Cases 2 and 3 further 

validate that simply stable pole placement provides adequate tracking. Cases 4 through 7 were used 

to identify the optimum bank angle trajectory shape. Also the advantages and disadvantages of the 

adaptive aileron constraint technique developed in Chapter 3 were identified. No linear simulations 

are presented here using the adaptive elevator constraint technique as it did not affect any of the 

linear results. 

Table 11. Linear Model, Bank Angle Cases 

Case A* B* c* D* 

1 Off 0.75 ±30° 60° Step Input 
2 Off 0.75 ±0.5° 60° Step Input 
3 Off 0.50 ±0.5° 60° Step Input 
4 Off 0.75 ±0.5° 60° Sin Input, tss = lOsec 
5 On 0.75 ±0.5° 60° Sin Input, tss = lOsec 
6 Off 0.75 ±0.5° 60° Cos Input, t33 = lOsec 
7 On 0.75 ±0.5° 60° Cos Input, tss = lOsec 
*A - Aileron Adaptive Constraint On or Off 
*B - A + BFrand A + LC Pole Starting Location 
*C - Rudder Stops 
*D - Trajectory 

Comparing Figures 13 and 15, there is no noticeable difference in rise time or overshoot for 

a 60° step input despite the difference in rudder limit constraints. While the variation in steady 

state perturbation outputs V and h in Figures 14 and 16 are negligible compared to their respective 

trim conditions, the use of more restrictive rudder constraints did increase damping, overshoot and 

settling time, thus improving longitudinal output tracking. A comparison of Figure 15 and the Case 

3 corresponding output (see Appendix D) showed that the more restrictive pole placement of Case 
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3 did not noticeably improve bank angle response. It did, however, slightly improve velocity and 

altitude response, but the steady state tracking response in Figure 16 was more than acceptable with 

AVSS   =   -0.0005% 

Ahss   =   -0.01%. 
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Figure 13. Case 1 - Bank Angle Output 
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The use of more restrictive rudder constraints also showed positive benefits for the control 

inputs. Figure 20 shows there was less longitudinal control power required for the more restrictive 

rudder constraints as compared to Figure 17. There is a much more dramatic decrease in required 

lateral control power as seen in Figure 20. As seen before in the validation simulation results, Figure 
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20 shows the aileron rate constraint is active. Additionally Figure 20 shows the rudder position 

constraint is also active. The aileron is experiencing rate constraints according to 

^^max     =    ^max * J-s 

^umin     ==    umin * J-s (.""/ 

Where ümaXail = 80° /sec from Table 8 of Chapter 3 and Ts = 0.1 sec yields the maximum variation 

in aileron control input, A«, between time steps is 8°. The ratcheting of the aileron control inputs 

is due to the unconstrained future control input u(k +1), where l = l...q,as discussed in Chapter 

3. This ratcheting is not considered to be a problem as step inputs are not realistic trajectories 

and the results are presented here to demonstrate the capabilities of the MPC controller. If this 

ratcheting were to create problems one could redefine the constraint matrices, L\, MM, and Nu to 

allow constraints at future time k +1. A limitation of the LTI model is shown in Figures 17 and 20. 

One can see the steady state values of elevator and throttle are both zero. An actual aircraft would 

require an increase in both (positive deflection of throttle and negative for elevator) to maintain 

constant altitude. As stated in the Introduction, this research concentrated on realistic outputs. As 

will be seen in the nonlinear simulations, the expected increase in throttle and elevator are achieved. 

The placement of the MPC controller pole locations closer to the origin was simulated in Case 3. 

The results, in Appendix D, did not provide any significant benefits over Case 2. 

45 



.rrrr-.Th'roffle.(non-dim);. 
— Elevator (deg) 

—!- Ailerons (deg): 
-■ -h . Rudder, (deg) |. 

2 3 4 5 6 7 
Time (sees) 

Figure 17. Case 1 - Longitudinal Controls Figure 18. Case 1 - Lateral Controls 

"5      ° 

6-0-1 

-;  
— Elevator (deg) 

  ■■; \ \ \ \ ! ; \  

\ 1 

■•| \ \ ; \ \ \  

* : 

:. 4 ? \  

  
;          ;          i          ;          i          i          !          i          i 

~~\ 

—!- Ailerons (deg): ... 

\ !: ! 1 1 i  
... 

T        "":            1           "i            ~ ~     T        ~. 

1 
 \ - 

0 12 3 4 5 
Time (sees) 

01234567 
Time (sees) 

Figure 19. Case 2 - Longitudinal Controls Figure 20. Case 2 - Lateral Controls 

In Cases 4 and 5 a comparison was made between the use of absolute aileron constraints, Case 

4, and the adaptive aileron constraint technique developed in Chapter 3, Case 5. The results are 

presented in Appendix D due to the unrealistic boundary conditions. The sine wave bank angle tra- 

jectory imposed an instantaneous jump in roll rate, which is unrealistic in an actual aircraft. The 

simulations did provide informative results as to the ability of the adaptive aileron constraint tech- 

nique to handle these discrete boundary conditions. A comparison of Cases 4 and 5 showed that the 

adaptive constraint technique reduced smooth system tracking. This is attributed to the suspected 

reduction of stability caused by the adaptive aileron constraint technique. Also the required con- 

trol power was increased. Despite these consequences of the adaptive aileron constraint technique, 
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Simulation results are still acceptable. As will be shown later, as more demanding trajectories are 

commanded, the benefits of the adaptive constraint techniques outweigh these consequences. 

In Cases 6 and 7, the bank angle was commanded to follow a cosine trajectory. The use of a 

cosine trajectory imposed zero roll rate boundary conditions, which provided a realistic bank angle 

trajectory. Due to the cosine trajectory, there was little difference between the results of Cases 6 

and 7 shown in Figures 21 through 28. Figure 23 shows a much improved bank angle overshoot 

as compared to Case 5. Despite slightly increased control power usage due to the adaptive aileron 

technique, the results of Case 7 are more than acceptable. 
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When the adaptive aileron constraint technique is employed, it is the <j)e term, defined in Equa- 

tion 79 of Chapter 3, which causes the oscillatory behavior. As a stability analysis was not per- 

formed on this term, these oscillations are expected. Additionally, the relative contribution of cj>e 

to the overall adaptive technique can cause the system to go unstable. For this thesis a trial and 

error approach was used to develop the appropriate </>e contribution, trading decreased stability for 

increased tracking performance. Future research using adaptive constraints should address these 

stability issues directly. 
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4.2.2  Altitude Response 

Three cases listed in Table 12 were simulated to characterize commanded altitude response. 

Since the constrained rudder, ±0.5°, showed positive results in the bank angle responses and rud- 

der is primarily a lateral control input, it was once again constrained to ±0.5°. Additionally there 

was little noticeable improvement in placing the poles of the controller closer to the origin so their 

placement remained at FTi =0.75 and L; = 0.75. 

Table 12. Linear Model, Altitude Cases 

Case A* B* c* D* 

8 Off 0.75 ±0.5° 500/i Step Input 
9 Off 0.75 ±0.5° 500/i Cos Input, tss = 20sec 
10 On 0.75 ±0.5° 500/i Cos Input, tss = 20sec 
*A - Aileron Adative Constraint On or Off 
*B - A + BFrand A + LC Pole Starting Location 
*C - Rudder Stops 
*D - Trajectory 

Figures 29 through 32 show that the altitude response is at least initially unstable when com- 

manded to a step trajectory. The simulation response is unrealistic as it demands an infinite rate of 

climb at the first time step. Since the control inputs were constrained, this implies that there may 

not be a feasible solution to the commanded step trajectory. 
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Figure 29. Case 8 - Altitude Output 
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Given sufficient time, the system should in theory stabilize and converge since the linear theory 

states that the cost function is monotonically decreasing, however the response shown in Figure 29 

would be objectionable to any pilot. The violent elevator oscillations would also be objectionable 

as they would decrease the life expectancy of the elevator actuators. The ratcheting of the elevator 

input can also be attributed to the unconstrained future control inputs u(k + I) as discussed earlier. 

Because of these concerns a realistic cosine trajectory was commanded in Cases 9 and 10 according 

to Equation 71 of Chapter 3. 

Figures 33 through 36 show the simulation results using a commanded cosine trajectory and the 

affect of using absolute aileron constraints versus adaptive constraints. In both cases altitude steady 
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State tracking error is less than 4%. However the big improvement of using adaptive constraints was 

the significantly reduced steady state bank angle error, 27° in Figure 34 and 0.5° in Figure 36. The 

corresponding control inputs for Cases 9 and 10 are shown in Figures 37 through 40. 

Figure 33. Case 9 - Altitude Output 
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Figure 40. Case 10 - Lateral Controls 

4.2.3   Combined Dynamic Response 

The final two cases of the linear simulations, listed in Table 13, show the ability of the con- 

troller to handle lateral and longitudinal dynamics simultaneously. Since the linear model is nearly 

decoupled into longitudinal and lateral motion, the resulting outputs of Case 11 were basically the 

results of Cases 5 and 10 superimposed. Case 12 was the result of the superposition of Cases 7 and 

10. 
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Table 13. Linear Model,Combined Dynamic Cases 

Case A* B* C* D* E* 

11 On 0.75 ±0.5° 60° Sin Input, tss = lOsec 500/t Sin Input, tss = 20sec 

12 On 0.75 ±0.5° 60° Cos Input, tss = lOsec 500 ft Cos Input, tss = 20sec 
*A - Aileron Adative Constraint On or Off 
*B - A + BFrand A + LC Pole Starting Location 
*C - Rudder Stops 
*D - Bank Angle Trajectory 
*E - Altitude Trajectory 
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4.3 Comparison of Linear and Nonlinear Models 

Before proceeding with the nonlinear F-16 model, it was desired to first ensure that the non- 

linear model, Figure 2, was working correctly and identify any potential problem areas of using a 

linearized model to develop the various matrices of the MPC strategy. To achieve these objectives, 

the linearized F-16 model of Figure 1 was placed in the loop of the MPC controller, Figure 7. The 

system was commanded according to equation 90, where the output vector y(k) is defined in Equa- 

tion 91. 

s   =    [52000] (90) 
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y   =    [ <j>   h   V   ß   0 } (91) 

The control inputs to both the linear and nonlinear systems are shown in Figures 49 and 50. As seen 

in Figure 51 there is excellent correlation between the linear and nonlinear model for bank angle, (f>. 

Also there was good agreement of the side slip angle, ß, response in Figure 52 and the pitch rate, 8, 

response in Figure 53. However the two areas of concern are with altitude and velocity responses 

shown in Figures 55 and 54. These results caused concern as the state prediction would be predicting 

the incorrect future values of velocity and altitude which are fed into the optimizer. The robustness 

of the MPC strategy would be questioned. A comparison was also made with the e.g. location at 

35%. These results are in Appendix D and show worse correlation between altitude and velocity. 
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4.4 Nonlinear Model Simulation Results 

As with the linear simulations, the nonlinear simulations followed a similar path for validating 

that the MPC controller works on both lateral and longitudinal trajectories as well as combined 

trajectories. The time step, weighting matrices and output vector used for all nonlinear simulations 

are given in Equation 92. 

Ts   =   0.1 sec 

Ru   = 

Ry = 

0.1 0 0     0 
0 le4 0     0 
0 0 1     0 
0 0 0   100 

le2 0 0      0 0 
0 le4 0      0 0 
0 0 le4     0 0 
0 0 0     le 2     0 
0 0 0       0 le4 

(92) 

y   =   [<j>   h   V   ß   e\ 

The added outputs, ß and 6, were used to assist in system tracking. By adding these two outputs, 

two additional tuning parameters were added to the MPC problem, specifically their corresponding 
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elements in the weighting matrix Ry. The indirect benefits of these states were seen in the ability 

to reduce aileron and elevator oscillations without adversely affecting system tracking. 

4.4.1   Bank Angle Response 

Building upon the linear results, 5 different nonlinear bank angle response cases were simu- 

lated. These cases, listed in Table 14, were used as a basis of comparing the linear and nonlinear 

responses. In general, the nonlinear bank angle responses closely resembled the linear responses for 

the same set of conditions. This was expected as the comparison between the linear and nonlinear 

models showed excellent correlation of the lateral outputs. 

Table 14. Nonlinear Model, Bank Angle Cases 

Case A* B* C* D* 

13 Off 0.75 ±0.5° 60° Step Input 
14 Off 0.75 ±0.5° 60° Sin Input, tss = Wsec 
15 On 0.75 ±0.5° 60° Sin Input, tss = Wsec 
16 Off 0.75 ±0.5° 60° Cos Input, tss — Wsec 
17 On 0.75 ±0.5° 60° Cos Input, tss = lOsec 
*A - Aileron Adative Constraint On or Off 
*B - A + BFrand A + LC Pole Starting Location 
*C - Rudder Stops 
*D - Trajectory 

Case 13 demanded a 60° bank step trajectory. Comparing Figure 56 with the linear case, Figure 

15, the two bank angle output trajectories are very similar. Even the lateral control inputs, Figures 

59 and 20, show similar responses. The only difference is the nonlinear case took approximately 

twice the time to reach steady state. This is most likely due to aerodynamic effects not accounted 

for in the LTI model. An interesting result of the nonlinear simulation was the steady state elevator 

and throttle inputs shown in Figure 58. As discussed in the linear response section, the steady state 

longitudinal control inputs were zero. Here the controller is simulating a real world response in 

which additional elevator and throttle inputs are required to generate the extra lift and overcome 

the additional drag generated in a steady level turn. While the controller did not do a great job in 
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maintaining zero altitude loss shown in Figure 56, a 40ft drop in altitude is realistic in actual flight 

for a sudden 60° bank angle input. Correct modification of the weighting matrices or employing an 

adaptive weighting matrix scheme should reduce this altitude deviation. 
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Simulation results for Cases 14,15 and 16 are shown in Appendix D. For Case 14 the controller 

smoothly followed the sine wave bank trajectory, but lost 40 ft in altitude during the dynamic 

portion. Upon reaching zero bank angle, the altitude output also returned to zero. It is suspected, 

as discussed earlier, that the inability of the controller to accurately predict velocity and altitude 

far future outputs is the cause of the altitude deviation. Both Cases 15 and 16 experienced similar 

altitude changes before returning to zero deviation. Once the output trajectory had returned to zero 
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steady state, the nonlinear model outputs and control outputs also smoothly returned to zero. In 

Case 15, as discovered in the linear Case 5, when adaptive aileron constraints were utilized, there 

was not as smooth of tracking for the same commanded trajectory as Case 14. Aileron inputs were 

also oscillatory for Case 15 but followed the general trend as Case 14. 

In Case 16 the bank angle response was similar to the results of the linear Case 6. Upon reach- 

ing the zero steady state value at 10 sec the overshoot was negligible especially when compared 

to the sin wave trajectory of Case 14. This reduced overshoot was attributed to the boundary con- 

ditions of a cosine wave as discussed in the linear bank angle results section. Simulation results 

for Case 17 are shown in Figures 60 through 63. As expected from earlier results the trajectory is 

not as smooth since adaptive aileron constraints are being used. However there is still acceptable 

trajectory following and the altitude deviation is slightly less than Cases 14 through 16. 
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4.4.2   Altitude Response 

A series of altitude commanded trajectories were simulated as listed in Table 15. Cases 18 

through 20 were run to compare the nonlinear response to the linear results. Based upon the success 

of the Cases 18 - 20, a more demanding altitude change was simulated as seen in Cases 21 through 

23. Throughout the simulations restrictive rudder constraints have had either neutral or slightly pos- 

itive benefits in tracking and reduced control power. Because of the more demanding longitudinal 

maneuvers, the rudder constraints were further limited to ±0.1°. Also the placement of the state 

estimator poles with Li = 0.70, appears to have assisted in the altitude tracking. However quantifi- 

able results using Li = 0.70 were not identified. 
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Table 15. Nonlinear Model, Altitude Cases 

Case A* B* c* D* 

18 Off 0.75 and 0.75 ±0.5° 500/i Step Input 
19 Off 0.75 and 0.75 ±0.5° 500/t Cos Input, tss = -- 20sec 

20 On 0.75 and 0.75 ±0.5° 500/i Cos Input, tss = -- 20sec 

21 Off/Off 0.75 and 0.70 ±0.1° 9000/i Cos Input, tss = 60sec 
22 On/Off 0.75 and 0.70 ±0.1° 9000/t Cos Input, tss = 60sec 
23 On/On 0.75 and 0.70 ±0.1° 9000/t Cos Input, tss = QOsec 
*A - Aileron Adative Constraint On or Ofi 
*B - A + BFr<md A + LC Pole Starting Location 
*C - Rudder Stops 
*D - Trajectory 

Due to instability seen in the linear case of a step altitude commanded trajectory Figure 29, it 

was informative to see the response of the nonlinear model, Figures 64 through 68 . The nonlinear 

model exhibited much better system tracking as compared to Case 8. In the nonlinear case, the 

target altitude of 500 ft was not reached until ~ 7 sec as compared to 3 sec in the linear simulation. 

It is expected that this 'sluggishness' in the nonlinear model actually increases the likelihood of 

reaching a steady state value. This 'sluggishness' is due to a lack of understanding of the limits of 

various accelerations of the nonlinear model and was highlighted in other simulations not included 

here. For example, a 1000 ft cosine altitude trajectory with tss — 6 sec was commanded of the LTI 

model. While the commanded rate of climb only reached ~ 250 ft/sec meeting the h and throttle 

requirements of Chapter 3, there was no consideration of the aircraft's acceleration response. As a 

result the nonlinear model went unstable. The elevator ratcheting seen in Figure 67 was suspected 

to be a result of both an unrealistic step trajectory and the unconstrained control inputs u(k + I) as 

discussed in the linear results section. 
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Case 19 (see Appendix D) and Case 20, Figures 69 through 73, have near identical model 

output and control input results. The exception is that the use of adaptive aileron constraints in Case 

20, proved to reduce bank angle output deviation by more than 50% over the first 20 sec. In both 

cases though steady state values of bank angle were both ~ 0.4°. 

As discussed in the linear bank angle results section, there was no stability analysis made on the 

adaptive aileron constraint technique. This proved to be important because the use of the technique 

in Equation 80 of Chapter 3 proved to cause the output of Case 20 to initially become unstable. To 

regain lateral stability the buffer term, ^mmaXo, which was added to the cf>e term was increased. 

This provided the optimizer more latitude in selecting a stabilizing aileron input. Equation 93 was 

the original form 

m„ 

m„ 

-0.06 -,       0.25 
-7; 4>e + T7^mmaxa 100 

-0.06..      0.25 
4e + 100 

TUr, 

and Equation 94 has the increased buffer. 

m„ 

m„ 

-0.061       0.5 

-0.06 -, 
<t>e + 

0.5 
lOo'' 

:mr, 

(93) 
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The results of Cases 21 through 23 are very similar to each other. Plots for Cases 21 and 22 are 

found in Appendix D and for Case 23 Figures 74 through 78 are seen below. The use of the adaptive 

elevator constraint developed in Equation 84 of Chapter 3 had no apparent affect on the results of 

the simulations. However the use of the adaptive aileron constraint technique was beneficial for 

ensuring bank angle deviation remained near zero. In Case 21 the bank angle reached a maximum 

of 10° and a steady state value of 8°. In Cases 22 and 23 the maximum bank angle was less than 1° 

as well as the steady state value. As discussed and shown previously the only draw back to using 

adaptive aileron constraints was an increase in aileron control power due to oscillations. However 
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as seen in Figure 78 the oscillations are negligible when compared to the absolute aileron control 

inputs of ±21.5°. 
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4.4.3   Combined 

The simulation cases listed in Table 16 were ran to meet the of the initial objective of this 

thesis. That was to show the MPC strategy can handle combined lateral and longitudinal dynamics 

using a nonlinear model. Cases 24 and 25 were simulated to compare the affects of adaptive aileron 

constraints during the combined lateral and longitudinal maneuvers. Case 25 was the nonlinear 

equivalent to the linear Case 12. Cases 26 through 28 were run to demonstrate the MPC's robustness 

in handling commanded trajectories which are realistic of actual aerospace systems. 

Table 16. Linear Model,Combined Dynamic Cases 

Case A* B* C* D* E* 

24 Off/Off 0.75 and 0.75 ±0.5° 60° Cos Input, tss = lOsec 500/t Cos Input, tss = -- 20sec 
25 On/Off 0.75 and 0.75 ±0.5° 60° Cos Input, t8a = lOsec 500/t Cos Input, tss = =20sec 
26 Off/Off 0.75 and 0.70 ±0.1° 60° Cos Input, tss = 20sec 9000/i Cos Input, tss = 60sec 
27 On/Off 0.75 and 0.70 ±0.1° 60° Cos Input, tss = 20sec 9000/t Cos Input, tss = 60sec 
28 On/On 0.75 and 0.70 ±0.1° 60° Cos Input, tss = 20sec 9000/i Cos Input, tss = 60sec 
*A - Aileron Adative Constraint On or Off 
*B - A + BFrand A + LC Pole Starting Location 
*C - Rudder Stops 
*D - Bank Angle Trajectory 
*E - Altitude Trajectory 
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The results of Case 24 (Appendix D) are similar to Case 25 results shown in Figures 79 through 

83. In both cases altitude response lagged while the bank angle was near its maximum value. With 

correct initial weighting or even an adaptive weighting scheme, this problem should be solved. The 

only difference between the two cases was the usual aileron input oscillations caused by the adaptive 

aileron constraints. The adaptive aileron constraints did not provide any beneficial results in Case 

25 and small increase in control power was required as compared to Case 24. 
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However, the use of adaptive aileron constraints was beneficial for system tracking as more 

demanding trajectories were commanded. In Case 26 (results are in Appendix D) bank angle track- 

ing was smoother than in Figure 85 of Case 27 and the control input oscillations seen in Figure 88 

were not experienced in Case 26. But, the steady state bank angle in Case 26 was 8° and it was less 

than 1° in Case 27. The other outputs and inputs shown in Figures 84 through 88 were nearly iden- 

tical between the two cases. While the altitude goal of 9000/t was not achieved, its steady state 

error was less than 3.5%. With additional work this error should be reduced. Case 28 had similar 

results to Case 27 as seen in Figures 89 through 93. The difference between the two cases was the 

use of elevator adaptive constraints. Figures 87 and 92 show the adaptive elevator constraints trun- 

cated the elevator input at 10 sec. Despite this truncation there was no apparent affect on lateral or 

longitudinal outputs. The truncation problem should be overcome by simply readdressing the ele- 

vator adaptive constraint technique and including a lateral contribution as discussed in Chapter 3. 

The elevator constraint technique was included in this thesis to demonstrate it had no adverse affect 

on system tracking. 
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Another unique feature of Cases 26 through 28 was that the final location of the controller 

poles had moved significantly. Equation 95 lists the starting and ending locations of the poles. 

eig(A + BFr)start   =    [0.750   0.746   0.742   0.737   0.733   0.729   ... 

0.725   0.721   0.717   0.713 ] 

eig{A + BFr)end   =    [ 0.886 ± 0.0853*   0.858   0.795 ± 0.127*   0.795 ± 0.089?    ... 

0.718 ±0.241*   0.618] 

eig(A + LC)start   =    [ 0.700   0.696   0.692   0.688   0.684   0.680   ... (95) 

0.677   0.673   0.669   0.665 ] 

eig(A + LC)end   =    [ 0.919   0.796 ± 0.039*   0.730   0.721 ± 0.065*   ... 

0.706   0.617   0.527   0.520 1 
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Chapter 5 - Conclusions and Future Research 

5.1  Conclusions 

As shown, the original objectives of using the MPC strategy were achieved. Numerous sim- 

ulations demonstrated the ability of the MPC strategy to handle dynamic trajectories while using 

a nonlinear model. Also, the placement of the controller poles at the origin to guarantee system 

tracking was relaxed to a simply, stable requirement with a heuristic guarantee of a finite error us- 

ing a linear model. Finally two adaptive constraint techniques were developed and simulated. The 

aileron adaptive constraint technique successfully demonstrated the ability to reduce lateral steady 

state error with minimal increases in required control power. The adaptive elevator technique was 

not analyzed in depth and showed only neutral effects on tracking and control power usage. 

Throughout the research, an attempt was made to identify the influence of the various tuning 

parameters listed in Chapter 2 on system tracking and required control power. However, generaliza- 

tions regarding the affects of these tuning parameters on system performance were not developed 

because a detailed sensitivity analysis was not performed. Additionally the influence of the tun- 

ing parameters on the system performance was suspected to be nonlinear. This nonlinear behavior 

was demonstrated through various simulations as individual changes were made in the placement 

of controller poles, weighting matrix elements, time step selection and dynamic trajectory design. 

Several simulations were performed in which controller poles were placed either closer to or 

further away from the origin. However there appeared to be no consistency in improved system 

tracking or reduced control power. In general, there was an inverse relationship between elements of 

the weighting matrices, Ry and Ru, provided there was a strong coupling of the corresponding inputs 

and outputs (i.e. aileron deflection and roll rate). However there were cases where this relationship 

did not hold true. Selection of the time step, Ts, also demonstrated nonlinear effects. Reduction of 
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the time step from 0.1 sec to less than 0.05 sec generally made the system unstable. Increasing the 

time step also produced unstable results. Dynamic trajectory design was also an important factor in 

achieving stable simulations. Various polynomial bank angle and altitude trajectories were designed 

with smooth boundary conditions, but none were as successful as the sine and cosine trajectories. 

Thus more complex trajectory design might be required to consist of a sum of a finite number of sine 

and cosine functions. Also for dynamic trajectory design, it is important to consider the physical 

limits of the aircraft. For example, a trajectory was designed where the rate of climb, h, fell within 

the bounds of the nonlinear model. However the derivative of h, was beyond the capability of the 

nonlinear model and caused the simulation of the entire closed loop system to become unstable. 

5.2 Future Research/Projects 

With the eventual goal of realizing the MPC strategy on an actual aircraft, five potential re- 

search topics not covered in this thesis are presented. First, as was seen in Chapter 4, linear and 

nonlinear states quickly diverged from each other when provided with the same control inputs. It is 

expected that a simple nonlinear model which incorporates the effects of lateral motion would solve 

this problem. The prediction matrices would then be rewritten to incorporate this nonlinear model. 

A simpler interim solution would base the linear prediction matrices upon an ITI model which was 

calculated at some small bank angle. However, the problem of lateral and longitudinal coupling 

would still exist. Second, the design philosophy used in this thesis separated the commanded tra- 

jectory code from the optimization code. Doing this allows the incorporation of a pilot model to 

determine the commanded trajectory. One concept of a simplified pilot model would consist of three 

parameters. First, longitudinal stick inputs would correspond to pitch angle changes. Second, lat- 

eral stick inputs would correspond to roll rate changes. And last throttle inputs would correspond to 

altitude changes. The third idea consists of developing a gain scheduling technique. Since the dy- 
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namics of a nonlinear model are constantly changing, the use of gain scheduling could significantly 

improve system tracking. The design used in this thesis left open the possibility of selecting the pre- 

diction matrices as well as the inner loop feedback matrices. The selection criteria could be based 

upon any combination of outputs, control inputs or their derivatives. The selection would take place 

at each time step within the optimization routine. Fourth, to simulate more realistic conditions, the 

SimStar hybrid computer is available here at AFIT Using this asset, the cumbersome requirement 

of numerical integration would be performed by the analog portion of the SimStar computer. And 

finally, perhaps the most difficult of these topics is the identification of the effects of the various 

tuning parameters on system performance. 
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APPENDIX A - MatlabCode 

A.l Modgen.m 
% 
% LTI Model Generation for Thesis using Aircraft Control 

% and Simulation by Stevens and Lewis 

% Capt Christopher M. Shearer 

% 1 Jul 97 

% 

clear 

global ay az 
xguess = [669 0.01 0 0. 0.01 0 0 0 0 0 0 100 16.98]; 

xguess = [669.796 0.0111544 0 -6.27372e-10... 

0.0111544 0-0-0 0 0 0... 

100 16.9845]; 

uguess = [0.261541 -1.54463 6.18088e-ll -2.02108e-ll]; 

const(l) = 0.0; % const(l) = gamma (deg) 

% const(2) = Sin(Gamma) 

const(3) = 0.0; % const(3) = Roll Rate (deg/sec) 

const(4) = 0.0; % const(4) = Pitch Rate (deg/sec) 

const(5) = 0.0; % const(5) = Turn Rate (deg/sec) 

const(6) = 0.0; % const(6) = Phi (Bank Angle) (deg) 

% const(7) = Cos(Phi) 

% const(8) = Sin(Phi) 

const(9) = 0.0; % const(9) = Theta dot (deg/sec) 

const(10) = 1; % const(10) = Coordnated Turn (1 = yes, 0 = no) 

const(ll) = 0.0; % const(ll) = Rate of Climb (ft/sec) 

const(12) = 0.0; % const(12) = Bleed Rate (ft/secA2) 

const(13) = 5 % const(13) = Orient (1 = Wings Level, Steady Flight) 

% (2 = Constant Climb Angle, Gamma) 

% (3 = Constant Altitude, Constant Turn Rate) 

% (4 = Constant Pitch Rate, theta dot) 
% (5 = Constant Turn Rate and Constant Climb) 

cases = easel 

n = size(cases,l); 
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for i = l:n 

mach = cases(i,l) 

alt = ca 

ses(i,2); 

TR = cases(i,3); 

RC = cases(i,4); 
fname = ['vm',num2str(mach*10),'a',num2str(alt/100),'tr',... 

num2str(TR*10),'rc',num2str(RC/100),'.out']; 

fid = fopen(fname,'w'); 
xguess(12) = alt; 

xguess(l) = adcl(mach,alt); 

const(5) = TR; 

const(ll) = RC; 

%%%%% Go find steady state values of states %%%%% 

[x,u,fcost,lcost] = trimmer(xguess,uguess,const,fid); 

%%%%% Go compute the state space matrices %%%%% 

[a,b,c,d] = jacobl(x,u); 
%%%%% Get the X dot terms 

xd = subfl6(x,u); 

[amach,qbar]=adc(x( 1 ),x( 12)); 

%%%%% Output the results 

dataout(x,u,const,xd,fcost,lcost,ay,az,qbar,amach,a,b,c,d,fid); 

%%%%% Close the current file 

fclose(fid); 
%%%%% Set the current steady state values to the guess for the next time 

% xguess = x; 

% uguess = u; 

end 

77 



A.2 THmmeKin 
function [x,u,fcost,lcost]=trimmer(Xguess,Uguess,const,fid) 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Program: trimmer 

% by: Mech 628 Incredible Group 1 

% Ise, Shearer, Clark 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This program numerically calculates the equilibrium state and control vectors of an F-16 model given 

% certain parameters. Inputs include initial guesses for the equilibrium state and input vectors. 

% If the routine is called with no inputs the user will be prompted to key the equilibrium initial 

% guesses in by hand. 
% The user will be prompted to pick one of the following A/C orientation options 

% and provide the desired altitude, airspeed, gamma, turn rate, pitch rate.etc. : 

% 

% 1. Wings Level (gamma = 0) 

% 2. Wings Level (gamma <> 0) 

% 3. Steady Constant Altitude Turn 

% 4. Steady Pull Up 

% 5. Steady Turn and Constant Climb 

% 
% The user will also be prompted for the number of iterations to be used in the numerical 

% minimization search. 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% states: controls: 

% xl = Vt x4 = phi x7 = p xlO = pn ul = throttle 

% x2 = alpha x5 = theta x8 = q xll = pe u2 = elevator 

% x3 = beta x6 = psi x9 = r xl2 = alt u3 = aileron 

% xl3 = pow u4 = rudder 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Script/Function calls: 

% getinput 

% subfl6 

% clflö 

% confl6 

% fminsa 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global ay az 

format long; 

if(nargin==4) 
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x=Xguess; 

u=Uguess; 

else 

x=zeros(l,13); 

u=zeros(l,4); 

end 

% 
% const(l) = gamma (deg) 

% const(2) = Sin(Gamma) 

% const(3) = Roll Rate (deg/sec) 

% const(4) = Pitch Rate (deg/sec) 

% const(5) = Turn Rate (deg/sec) 

% const(6) = Phi (Roll Angle) (deg) 

% const(7) = Cos(Phi) 

% const(8) = Sin(Phi) 

% const(9) = Theta dot (deg/sec) 

% const(lO) = Coordnated Turn (1 = yes, 0 = no) 

% const(ll) = Rate of Climb 

% const(12) = Bleed Rate 

% const(13) = Orient (1 = Wings Level, Steady Flight) 

% (2 = Constant Climb Angle, Gamma) 

% (3 = Constant Altitude, Constant Turn Rate) 

% (4 = Constant Pitch Rate, theta dot) 

% (5 = Constant Turn Rate and Constant Climb) 

% 

rtod=180/pi; 

orient = const(13); 

ndof = 6; 

const(l) = const(l)/rtod; 

const(2) = sin(const(l)); 

const(3) = const(3)/rtod; 

const(4) = const(4)/rtod; 

const(5) = const(5)/rtod; 

const(6) = const(6)/rtod; 

const(7) = cos(const(6)); 

const(8) = sin(const(6)); 

const(9) = const(9)/rtod; 
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clears 

if (orient == 3) | (orient == 5) 

s(l)=u(l); 

s(2)=u(2); 

s(3)=u(3); 

s(4)=u(4); 

s(5)=x(2); 

s(6)=x(4); 

s(7)=x(5); 

end 

if (orient == 1) | (orient == 2) | (orient == 4) 

s(l)=u(l); 

s(2)=u(2); 

s(3)=x(2); 

end 

cont = 100.0; 

itertot = 0.0; 

iter=1500; 

tol = 0.5; 
%%%%% Now solve for the trimmed condition as long as the change in 

%%%%% the cost function is greater than 0.5 percent 

while cont > tol 

options = [0 1.0E-9 1.0E-9 0000000000 iter]; 

[s,options,x,u,fcost,lcost] = fminsa('clfl6',s,options,[],x,u,const); 

fprintf('Initial Cost Function: %g\n\ fcost); 

fprintf('Final Cost Function: %g\n', Icost); 

cont = abs((fcost-lcost)/fcost) * 100 

if lcost < 1.0e-5 

cont = tol*0.9; 

end 

itertot = itertot + iter 

end 
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A.3 Jacob.m 
function [a,b,c,d]=jacob(Xequil,Uequil) 

% [a,b,c,d]=jacob(xequil,uequil) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Program: Jacob 

% by: Mech 628 Incredible Group 2 

% Capts Chapa & St. Germain 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This program numerically calculates the linearized A, B, C, & D matrices of an F-16 model given 

% certain parameters. Inputs include the equilibrium state vector and input vector. If the routine 

% is called with no inputs the user will be prompted to key the equilibrium values in by hand. 

% Output may be shown coupled longitudinal/lateral or separate. If convergence is not reached for 

% any value, the user is prompted for an estimate. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% states: controls: 

% xl = Vt x4 = phi x7 = p xlO = pn ul = throttle 

% x2 = alpha x5 = theta x8 = q xll = pe u2 = elevator 

% x3 = beta x6 = psi x9 = r xl2 = alt u3 = aileron 

% xl3 = pow u4 = rudder 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Order of the measurements described by y = Cx + Du are: 

% 
% Longintudinal (Elevator Only): y = [ Az q alpha theta Vt ]T 

% Longintudinal (Elevator and Throttle): y = [ Az q alpha theta Vt ]T 

% Lateral: y = [ Ay p r beta phi ]T 

% Coupled Long & Lat: y = [ Az q alpha theta Vt Ay p r beta phi ]T 

% 
% Note: angles are in degrees, angular rates are in deg/s, 

% airspeed in ft/sec, accelerations (Az, Ay) are non-dimensional (i.e., in g's) 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Order of the inputs u are: 

% 
% Longintudinal (Elevator Only): u = [ el ]T 

% Longintudinal (Elevator and Throttle): u = [ thtl el] T 

% Lateral: u = [ ail rdr ]T 

% Coupled Long & Lat: u = [ thtl el ail rdr ]T 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Script/Function calls: 

% getinput 

% subfl6 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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global az ay; 

if nargin=2 

x=Xequil; 

u=Uequil; 

eise 

dispC ') 
dispCInput The Equilibrium State And Control \fectors:') 

dispC ') 

getinput 

end 

xe=x;ue=u; 

tol=0.0001; 

xde=subfl6(x,u); 

aze=az;aye=ay; 

%%%%% A matrix %%%%% 

fori=l:13 

forj=l:13 
x=xe;del=0.01;slopel=0;diff=.9; 

ifxe(i)==0 

del=0.5; 

eise 

del=del*xe(i); 

end 

while diff > toi 

x(i)=xe(i)+del; 

xd=subfl6(x,u); 

slope2=(xd(j)-xde(j))/(del); 

diff=abs(slopel-slope2); 

del=del*.l; 

slopel=slope2; 

ifdiff >le6 

fprintf('No convergence for perturbed state XI with state X2 : ')'» 

Xl=i 

X2=j 
slopel=input('Enter estimate : '); 

diff=0; 

end 

end 

AA(j,i)=slopel; 

end 

end 
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%%%%% B matrix %%%%% 

x=xe; 

fori=l:4 

forj=l:13 
u=ue;del=0.01 ;slopel=0;diff=l; 

ifue(i)==0 

del=0.5; 

else 

del=del*ue(i); 

end 

while diff > tol 

u(i)=ue(i)+del; 

xd=subfl6(x,u); 

slope2=(xd(j)-xde(j))/(del); 

diff=abs(slope2-slopel); 

del=del*.l; 

slopel=slope2; 

ifdiff>le6 
fprintf('No convergence for perturbed input U with state X : '); 

U=i 

X=j 
slopel=input('Enterestimate: '); 

diff=0; 

end 

end 

BB(j,i)=slopel; 

end 

end 
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%%%%% C matrix %%%%% 

u=ue; 

fori=l:13%az 

x=xe;del=0.01;slopel=0;diff=l; 

ifxe(i)=0 

del=0.5; 

else 

del=del*xe(i); 

end 

while diff > tol 

x(i)=xe(i)+del; 

xd=subfl6(x,u); 

slope2=(az-aze)/(del); 

diff=abs(slope2-slopel); 

del=del*.l; 

slopel=slope2; 

if diff >le6 

fprintf('No convergence for az with state X :'); 

X=i 

slopel=input('Enterestimate: '); 

diff=0; 

end 

end 

CC(l,i)=slopel/(-32.2); 

end 

fori=l:13%ay 

x=xe;del=0.01 ;slopel=0;diff=l; 

ifxe(i)==0 

del=0.5; 

else 

del=del*xe(i); 

end 

while diff > tol 

x(i)=xe(i)+del; 

xd=subfl6(x,u); 

slope2=(ay-aye)/(del); 

diff=abs(slope2-slopel); 

del=del*.l; 

slopel=slope2; 

if diff >le6 

fprintf('No convergence for ay with state X :'); 

X=i 
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slopel=input('Enter estimate: '); 

diff=0; 

end 

end 
CC(6,i)=slopel/(32.2); 

end 

rtod=180/pi; 
)=[0 rtod 0000000000 0] 

)=[0 00000 rtod 00000 0] 

)=[0 0 rtod 000000000 0] 

CC(2,:)=[0 000000 rtod 0000 0];CC(3, 

CC(4,:)=[0 000 rtod 0000000 0];CC(7, 

CC(8,:)=[0 0000000 rtod 000 0];CC(9, 

CC(10,:)=[000rtod000000000];CC(5,:)=[1. 00000000000 0]; 

%%%%% D matrix %%%%% 

x=xe; 

fori=l:4%az 

u=ue;del=0.01;slopel=0;diff=l; 

ifue(i)==0 

del=0.5; 

else 
del=del*ue(i); 

end 

while diff > tol 

u(i)=ue(i)+del; 

xd=subfl6(x,u); 

slope2=(az-aze)/(del); 

diff=abs(slope2-slope 1); 

del=del*.l; 
slopel=slope2; 

ifdiff >le6 

fprintf('No convergence for az with input U :'); 

U=i 
slopel=input('Enterestimate: '); 

diff=0; 

end 

end 

D(l,i)=slopel/(-32.2); 

end 
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fori=l:4%ay 

u=ue;del=0.01 ;slopel=0;diff=l; 

ifue(i)==0 

del=0.5; 

else 

del=del*ue(i); 

end 

while diff > tol 

u(i)=ue(i)+del; 

xd=subfl6(x,u); 

slope2=(ay-aye)/(del); 

diff=abs(slope2-slopel); 

del=del*.l; 

slopel=slope2; 

if diff >le6 

fprintf('No convergence for ay with input U :'); 

U=i; 
slopel=input('Enter estimate: '); 

diff=0; 

end 

end 

D(6,i)=slopel/(32.2); 

end 
D(2,:)=[0 0 0 0];D(3,:)=[0 0 0 0];D(4,:)=[0 0 0 0];D(7,:)=[0 0 0 0]; 

D(8,:)=[0 0 0 0];D(9,:)=[0 0 0 0];D(10,:)=[0 0 0 0];D(5,:)=[0 0 0 0]; 

%%%%% transform A,B,C to book's format %%%%% 

posit=[l 25 8 13 3 47 9]; 

fori=l:9 
A(l,i)=AA(l,posit(i));A(2,i)=AA(2,posit(i));A(3,i)=AA(5,posit(i)); 

A(4,i)=AA(8,posit(i));A(5,i)=AA(13,posit(i));A(6,i)=AA(3,posit(i)); 

A(7,i)=AA(4,posit(i));A(8,i)=AA(7,posit(i));A(9,i)=AA(9,posit(i)); 

end 
B(1,:)=BB(1,:);B(2,:)=BB(2,:);B(3,:)=BB(5,:);B(4,:)=BB(8,:);B(5,:)=BB(13,:); 

B(6,:)=BB(3,:);B(7,:)=BB(4,:);B(8,:)=BB(7,:);B(9,:)=BB(9,:); 

C(:,1)=CC(:,1);C(:,2)=CC(:,2);C(:,3)=CC(:,5);C(:,4)=CC(:,8);C(:,5)=CC(:,13); 

C(:,6)=CC(:,3);C(:,7)=CC(:,4);C(:,8)=CC(:,7);C(:,9)=CC(:,9); 

%%%%% output to a,b,c,d %%%%% 
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dispC ') 
fprintfC 1) Longitudinal set (az,q,alpha,theta) With elevator only for input \n'); 

fprintf('2) Longitudinal set (az,q,alpha,theta) With elevator and throttle for inputs \n'); 

fprintf('3) Lateral set (ay,pr,r,beta,phi) \n'); 

fprintf('4) Combined Lateral and Longitudinal set \n\n'); 

%choice2=input('Choose your output format: '); 

%%%%% set choice2 to 1 for MECH 628 final 

choice2 = 4 

if choice2==l 
M=1;A2=4;B1=2;B2=2;C1=1;C2=5;D1=1;D2=5;C3=1;C4=4;D3=2;D4=2; 

elseif choice2==2 
A1=1;A2=5;B1=1;B2=2;C1=1;C2=5;D1=1;D2=5;C3=1;C4=5;D3=1;D4=2; 

elseif choice2==3 
A1=6;A2=9;B1=3;B2=4;C1=6;C2=10;D1=6;D2=10;C3=6;C4=9;D3=3;D4=4; 

else 
A1=1;A2=9;B1=1;B2=4;C1=1;C2=10;D1=1;D2=10;C3=1;C4=9;D3=1;D4=4; 

end 
a=A(Al:A2,Al:A2); 

b=B(Al:A2,Bl:B2) 

c=C(Cl:C2,C3:C4) 

d=D(Dl:D2,D3:D4): 
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A.4 Runme.m 
% Orginal author Derek W Ebdon 
% Modified Extensively by Capt Chris Shearer, Jul 97 

% 
% Script file for controller setup, "setup.m" 

% Lateral and Longitudinal motion 

% CONTROL SURFACES: All functioning 

% 
% The initial flight condition is as follows: 

% Alt.: 100 ft 

% Mach: 0.6 

% Vt: 670 ft/s 

% AOA : 0.57 deg 
% PA : 0.57 (pitch angle) 

% FPA : 0 deg (flight path angle) 

clear 

bankstep = 0; 

altstep = 1; 
if bankstep == 1 

Frpole = 0.75; 

Lpole = 0.75; 
Ts = 0.1;% Time Step 

end 
if altstep == 1 

Frpole = 0.75; 

Lpole = 0.75; 
Ts = 0.1;% Time Step 

ifTs== 0.051 

Frpole = 0.85 

Lpole = 0.85 

end 

end 

Tstart = 0.0; % Start Time 

Tstop = 30.0; % Stop Time 
% Plant States, Inputs and Outputs 

% x(l) = air speed, VT (ft/sec) 
% x(2) = angle of attack, alpha (rad) 
% x(3) = pitch angle, theta (rad) 

% x(4) = pitch rate, Q (rad/sec) 
% x(5) = engine thrust dynamics lag state, pow 

% x(6) = angle of sideslip, beta (rad) 

% x(7) = roll angle, phi (rad) 

% x(8) = roll rate, P (rad/sec) 

% x(9) = yaw rate, R (rad/sec) 

% x(10) = altitude, h (feet) 
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% u(l) = throttle command 0.0 < u(l) < 1.0 

% u(2) = elevator command in degrees 

% u(3) = aileron command in degrees 

% u(4) = rudder command in degrees 

% y(l) = Az, Normal Acceleration (g's) 

% y(2) = pitch rate, Q (deg/sec) 

% y(3) = angle of attack, alpha (deg) 

% y(4) = pitch angle, theta (deg) 

% y(5) = air speed, VT (ft/sec) 

% y(6) = Ay, Lateral Acceleration (g's) 

% y(7) = roll rate, P (deg/sec) 

% y(8) = yaw rate, R (deg/sec) 

% y(9) = angle of sideslip, beta (deg) 

% y(10) = roll angle, phi (deg) 

% y(ll) = altitude (feet) 

% 
% Get the trimed ITI state space matrices 

% 
[ascl,bscl,cscl,dreal,dscl,xeq,xeqall,ueq] = trim3; 

eig(ascl) 

along = ascl(l:5,1:5); 

eig(along) 

alat = ascl(6:9,6:9); 

eig(alat) 

% 
% Establish the maximum and minimum control inputs for the model 

% Note these are in deg and deg/sec, page 584 of Aircraft Control 

% and Simulation 

% 
uabsmax = [0.765 25.0 21.5 0.5]; 

uabsmin = [0 -25.0 -21.5 -0.5]; 

umaxrate = [le2 60.0 80.0 120.0]; 

uminrate = [-le2 -60.0 -80.0 -120.0]; 

% 
% The new output states 

% 
cscl = [cscl(10,:); % Bank angle in deg 

cscl(ll,:); % Altitude in feet 

100000000 0;% "\felocity (feet/sec) 

0 0 0 0 0 180/pi 0 0 0 0; % beta, Side Slip angle (deg) 

0 0 0 180/pi 0 0 0 0 0 0]; % theta dot, pitch rate (deg/sec) 
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dscl = [dsclüO,:); 

dsclCll,:); 

zeros( 1 ,size(bscl,2)); 

zeros(l,size(bscl,2)); 

zeros(l,size(bscl,2))]; 

% 
% Discritize the model 

% 
[A,B,C,D] = c2dm(ascl,bscl,cscl,dscl,Ts,'zoh'); 

% 
% Check the rank of the observability and controllability 

% 
if rank(ctrb(A,B))~=size(A,l) | rank(obsv(A,C))~=size(A,l) 

disp('The rank of the Controllability Matrix is'); 

rank(ctrb(A,B)) 
disp('The rank of the Observability Matrix is '); 

rank(obsv(A,C)) 
disp('The size of the A matrix is'); 

size(A) 

end 

% 
%Set the continous time matrices 

% 

at = ascl; 

bt = bscl; 

ct = cscl; 

dt = dscl; 

% 
%Determine the number of control inputs, outputs, and states 

% 
kappa = size(A,l); %estimator states 

xi = size(B,2); %control inputs 
eta = size(C,l); %system outputs 

% 
% Establish the prediction, optimization, and control horizons 

% 
p = 26; % State Prediction Horizon 

q = 26; % Control Horizon 
r = 5; % Optimization Horizon 

if min([p q]) - 2*kappa <= r 
disp('The Optimization Horizon is within 2 times the number of states to min(p,q)'); 

break 

end 
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rho = max([p q]); 

% 

% Establish Z matrix weights 

% 

Zr = eye(xi); 

Zl = eye(xi); 

% 
% Establish R optimization weights 

% 

ifbankstep== 1 

Ry = eye(eta); 

Ry(l,l) = le2*Ry(l,l); % Bank Angle (deg) 
Ry(2,2) = le4*Ry(2,2); % Altitude (Ft) 

Ry(3,3) = le4*Ry(3,3); % Pert \felocity (ft/sec) 

Ry(4,4) = le2*Ry(4,4); % Side Slip Angle (deg) 

Ry(5,5) = le4*Ry(5,5); % Pitch Rate (deg/sec) 

Ru = eye(xi); 

Ru(l,l) = le-l*Ru(l,l); 

Ru(2,2) = le4*Ru(2,2); 

Ru(3,3) = lel*Ru(3,3); 
Ru(4,4) = le2*Ru(4,4); 

end 

if altstep == 1 

Ry = eye(eta); 

Ry(l,l) = le2*Ry(l,l); % Bank Angle (deg) 

Ry(2,2) = le4*Ry(2,2); % Altitude (Ft) 

Ry(3,3) = le4*Ry(3,3); % Pert \felocity (ft/sec) 

Ry(4,4) = le2*Ry(4,4); % Side Slip Angle (deg) 

Ry(5,5) = le4*Ry(5,5); % Pitch Rate (deg/sec) 

Ru = eye(xi); 

Ru(l,l)=le-l*Ru(l,l); 

Ru(2,2)=le4*Ru(2,2); 

Ru(3,3) = lel*Ru(3,3); 

Ru(4,4) = le2*Ru(4,4); 

end 

% 
% Establish the constraint matrices: LI, Mm, Nn 

% The zeros are thrown in so that we do not want to constrain the future control 

% inputs but rather only the next step i.e. the identity matrix. This 

% is done because we will solve for the control inputs down the line 

% but we will only implement the first step set of control inputs 

% 
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LI = [ -eye(xi) zeros(xi,xi*(q-l)); 

eye(xi) zeros(xi,xi*(q-l)) ]; 

Mm = [ -eye(xi) zeros(xi,xi*(q-l)); 

eye(xi) zeros(xi,xi*(q-l)) ]; 

Nn = []; 

% 
%Nn = [ -eye(kappa) zeros(kappa,kappa*(p-l)); 

% eye(kappa) zeros(kappa,kappa*(p-l))]; 

% 
%Establish physical constraint limits: 1, m, n 

% 
1= l*[(-uminrate*Ts) (umaxrate*Ts)]'; 

m = l*[-(uabsmin-ueq) (uabsmax-ueq)]'; 

n=[]; 

% 
% Go calculate the gains neccesary to make the system stable 

% 
[Fr,L,K]=gains3(A,B,C,D,'B,Frpole,Lpole); 

% 
% Set up the controller matrices based upon the gains 

% 
[Ax,Bx,Cx,Dx,Ay,By,Cy,Dy,FO,Fl,G)H]=contller(A,B,C,Fr,L,Zl,Zr); 

% 
% Establish the gain matinees for the non linear simulation 

% 
Kfeed = [K(l,l) K(l,2) K(l,6) K(l,7) K(l,3) 0 K(l,8) K(l,4) K(l,9) 0 0 K(l,10) K(l,5); 
K(2,l) K(2,2) K(2,6) K(2,7) K(2,3) 0 K(2,8) K(2,4) K(2,9) 0 0 K(2,10) K(2,5); 

K(3,l) K(3,2) K(3,6) K(3,7) K(3,3) 0 K(3,8) K(3,4) K(3,9) 0 0 K(3,10) K(3,5); 

K(4,l) K(4,2) K(4,6) K(4,7) K(4,3) 0 K(4,8) K(4,4) K(4,9) 0 0 K(4,10) K(4,5)]; 

Kfeed = zeros(4,13); 

P= 180/pi; 

% 
% Non linear Matrix Gains, Used for picking off outputs 

% 

Krc = [0 0 0 0 0 0 0 0 0 0 0 1 0]; 

Kh = Krc; 

Kphi = [0 00P00000000 0]; 

Kvel = [100000000000 0]; 

Kbeta = [0 0 P 0 0 0 0 0 0 0 0 0 0]; 

Kthetd =[O0OOOO0POO00O]; 
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Klookl = [1 00000000000 0; %\fel 

0P0000000000 0;% alpha(deg) 

0000P0000000 0;%Pitch (deg) 

0000000P0000 0;%Q Pitch Rate (deg) 

0000000000010;% altitude (feet) 

000000000000 1];% engine thrust 

Klook2 = [0 0P000000000 0;% beta (deg) 

000P00000000 0;%phi (deg) 

000000P000000;%R Roll Rate (deg) 

00000P000000 0;%Yaw (deg) 

0 0 0 0 0 0 0 0 P 0 0 0 0]; % R, yaw rate (deg) 

% 
% Linear Matrix Gains, Used for picking off outputs 

% 

KvelL = [1000000000]; 

KbetaL=[00000P0000]; 

KphiL = [000000P000]; 

KqdotL=[000P000000]; 

KhL = [0000000001]; 

% 
% Set up the prediction matrices 

% 
[cF,cG,cGinf,cH,cFu,cGu,cGuinf,cHu,cFdel,cGdel,cGdelinf,cHdel,cIdel]: 

predmat(kappa,xi,eta,p,q,r,rho,FO,Fl,G,H,Fr,Zr); 

% 

% Set up the contraints 

% 
[S,T,cD,cE] = qpconst(C,Ry,Ru,cF,cG,cGinf,cH,cFdel,cGdel,cHdel,... 

cGdelinf,cFu,cGu,cHu,cGuinf,Ll,Mm,Nn,p,q,r,rho); 
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% Establish the initial values 

% 
xhatO = O.0*ones(l,kappa); 

xO = zeros(l, kappa); 

uO = zeros(l,xi); 

% 
% Set the number of x dot terms coming out of the xd routine 

% for the F-16 Model 

% 

kapfl6 = 13; 

x0fl6 = zeros(l,kapfl6); 

% 
% Save the Matrices to be used later 

% 
save matsl A B C D Fr L Zr T S cD cE 1 m n ueq 

ailu = []; 

aill = []; 
save ail ailu aill 

% 
% Start the Simulink diagram for the non-linear simulation 

% 

nlinsim 
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A.5 Gains3.m 
function [Fr,L,K]=gains3(A,B,C,D/B,zstgoal,zesgoal); 

% 
% function [Fr,L,K]=gains3(A,B,C,D,Ts,zstates,zestim) 

% 
% Function designed to make the poles of the discrete 

% system A + B*Fr less than zstates and the poles of the 

% discrete system A + L*C less than zestim 

% 

% Fr, Discrete Gains 

% K, Continuous Gains 

% 
% Convert the system to a continous models 

% 
[Ac,Bc,Cc,Dc] = d2cm(A,B,C,D,Ts,'zoh'); 

% 

% Get the number of states 

kappa = size(A,l); 

per = 0.95; 

red = 0.98; 

zstate = zstgoal; 

zestim = zesgoal; 

zst = ones(kappa,l); 

cnt = 0; 

% 
% Place the discrete poles of the state feedback 

% 

while max(abs(zst)) > zstgoal & cnt<10 

pst = (log(zstate)/Ts):... 

(log(per*zstate)/Ts - log(zstate)/Ts)/(kappa-l):... 

(log(per* zstate)/Ts); 

%pst(10) = log(0.1)/Ts 

Frc = -place(Ac,Bc,pst); 

Fr = -place(A,B,exp(eig(Ac+Bc*Frc).*Ts)); 

zst = eig(A+B*Fr); 

if max(abs(zst)) > zstgoal 

cnt = cnt + 1; 

zstate = red * zstate; 

else 

cnt = 12; 

end 

end 

pes = ones(kappa,l); 

cnt = 0; 
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% 
% Place the discrete poles of the estimator 

% 
while max(abs(pes)) > zesgoal & cnt<10 

pes = (log(zestim)ATs):... 

(log(per*zestim)/Ts - log(zestim)/Ts)/(kappa-l):... 

(log(per* zestim)/Ts); 

% pes(10) = log(0.5)/Ts 

Lc = -(place(Ac',Cc',pes))'; 

L = -(place(A,C',exp(eig(Ac+Lc*Cc).*Ts)))'; 

zes = eig(A+L*C); 

if max(abs(zes)) > zesgoal 

cnt = cnt+ 1; 

zestim = red * zestim; 

else 

cnt=12; 

end 

end 

% 
% Place the continuous poles of the state feedback 

% 

polel = -2; 

pole2 = -3; 
conpoles = polel:(pole2-polel)/(kappa-l):pole2; 

K = -place(Ac,Bc,conpoles); 

disp('Eigen Values of A + B*Fr'); 

eig(A+B*Fr) 

disp('Eigen Values of A + L*C); 

eig(A+L*C) 

disp('Eigen Values of Ac + Bc*K'); 

eig(Ac+Bc*K) 
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A.6 Optimize.m 
function [v] = optimize(cin); 

% 

% function [v] = optimize(cin); 

% 
% This m-file will run a constrained quadratic optimization to find the 

% quasi-reference v(k) that will be input to the plant. 

% INPUTS 

%ci 

%ci 

%ci 

%ci 

%ci 

%c; 

%c: 

%c: 

%c: 

%c: 

%c: 

%c: 

n - input vector that is multiplexed by simulink file 

n(l) = t, time 

n(2) = Ts, time step 

n(3) = kappa, Number of states 

n(4) = xi, Number of control inputs 

n(5) = eta, Number of outputs 

n(6) = kapfl6, Number of subfl6 states for F-16 Model 

n(7) = p, State Prediction Horizon 

n(8) = q, Control Horizon 

n(9) = r, Optimization Horizon 

n(10:xi+9) = u, control inputs 

n(10+xi:xi+kapfl6+9) = xO, Initial F-16 Model states 

% Written by Chris Shearer, Aug 97 

% 
t = cin(l)%Time 

Ts = cin(2); % Time Step 

kappa = cin(3); % Number of Estimator States 

xi = cin(4); % Number of Control Inputs 

eta = cin(5); % Number of System Outputs 

kapf 16 = cin(6); % Number of F-16 Model States 

p = cin(7); % State Prediction Horizon 

q = cin(8); % Control Horizon 

r = cin(9); % Optimization Horizon 

rho = max([p q]); 

% 

% Pick apart the optimizer input from Simulink 

% based upon the order of the multiplexier (Mux) 

% 

xhat = cin(10:kappa+9); 

y = cin(kappa+10:kappa+eta+9); 

u = cin(kappa+eta+10:kappa+eta+xi+9); 

% 
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% Now based upon the current value of y go get 

% A, B, C, D Discretized State Space Model 

% Fr, State Gains 

% L, Estimator Gains 

% Zr, Optimized v input gains (typically Identity) 

% T and S, matrices used in qp probelm 

% cD and cE, contraint equations for qp problem 

% 
[A,B,C,D,Fr,L,Zr,T,S,cD,cE,l,m,n,ueq] = matget(y); 

% 
% Now determine the current trajectory based upon 

% the current time, prediction and optimization horizions 

% 
[s,sinf] = trajpnt(t,Ts,p,r,0); 

% 
% This is for addaptive control 

% 
% First I get absolute max and minimum control inputs 

% Then apply scalling equations (ail = -0.0600 * ail/rollrate) 

% add a 1.25% buffer 

% then apply new max an mins 

% 

if 1 == 2 

bank = y(l); 

bankdotp = (s(l+eta)-s(l))/Ts; 

bankdote = (s(l+eta)-bank)/Ts; 

altdot = (s(2+eta) - s(2))/Ts; 

altddotp = (s(2+2*eta) - 2*s(2+eta) + s(2))/TsA2; 

alt = y(2); 
altddote = (s(2+2*eta) - 2*s(2+eta) + alt)/TsA2; 

umax = m(5:8)' + ueq; 

if bankdotp = 0 & altdot == 0 

uail = (-0.06/2)*bankdote; 

buffa = (0.5/100)*umax(3); 

elseif altdot == 0 

uail = -0.06*bankdotp; 

buffa = (0.5/100)*umax(3); 

else 
uail = -0.06*bankdotp + (-0.06/2)*bankdote 

buffa = (0.5/100)*umax(3); 

end 
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uailmax = uail + buffa; 

uailmin = uail - buffa; 

load ail 

ailu = [ailu uailmax]; 

aill = [aill uailmin]; 

save ail ailu aill 

m(3) = -uailmin; 

m(7) = uailmax; 

end 

if 1 == 2 

uell = -altddotp/45; 

uel = uell; 

uelmax = uel + (2/100)*umax(2); 

uelmin = uel - (2/100)*umax(2); 

m(2) = -uelmin; 

m(6) = uelmax; 

end 
[vinf] = vinfy(A,B,C,Fr,Zr,sinf,r,rho); 

"Rtar = [ xhat' y' vinf s' ]*T, 
[x,lambda,how] = qp(2*S,Tstar,cD,cE*[xhat' vinf y' u' 1' m' n']'); 

% Unconstrained 
%[x,lambda,how] = qp(2*S,lstar,0*cD,cE*[xhat' vinf y' u' 1' m' n']'); 

v = x(l:xi); 
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APPENDIX B - Operating Envelope and F-16 Planform and 

Longitudinal Views 

B.l F-16 Planform and Longitudinal Views 

Removed for Distribution Purposes 
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B.2 F-16 Operating Envelope/Turn Performance - Sea Level 

Removed for Distribution Purposes 
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C.l HARV 

APPENDIX C - LTI Models 
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The A,B,C, and D matrices that were used in the simulations were scaled using the following 

relationship 

i-scl T-lAT 

Bscl = T~lAS 

Csd = R~lAT 

Dscl   =   R^AS 
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C.2 F-16 

Listed below are the LTI state space matrices used in the linear simulations 
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A   = 
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APPENDIX D - Extra Simulation Results 

D.l  Combined 35% CG. Location, Linear vs Nonlinear Comparison 
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Figure 94. Linear and Nonlinear Comparison 
- Longitudinal Control Inputs 

Figure 95. Linear and Nonlinear Comparison 
- Lateral Control Inputs 
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Figure 96. Linear and Nonlinear Comparison 
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Figure 97. Linear and Nonlinear Comparison 
- Side Slip Angle 
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D.2 Case 3 
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D.3 Case 4 
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D.4 Case 5 
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D.5  Case 14 
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D.6 Case 15 
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D.7 Case 16 
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D.8 Case 19 
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D.9 Case 21 
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D.10 Case 22 

-20 - 

o 

-40 

-50 

v\ 

 Bank Angle (deg) 

\ 

 ;  

100 120 60 80 100 120 
Time (sees) 

Figure 135. Case 22 - Altitude Output Figure 136. Case 22 - \elocity and Bank An- 
gle Outputs 

1 i Beta (deg) 
r - Theta (deg) 

: 'l                                               : 

\                                           ■   I   . 

\                                I    '   l 

\          *                                             : 
"" - -i                                             : 

0                      2 0                     40                     60 
Time (sees) 

BO                    100 1 .0 

Figure 137. Case 22 - Beta and Theta Outputs 

115 



0.3 

0.2 

I0'1 
l       ° 
O 

.              |                ! 

 Throttle ;(non-dim) 
—  Elevator (deg) 

:                        I 

S-0.2 

-0.3 

-0.4 

1 

1 ~'\ ii"rt               " 
Mr"''                                             El 11              : 

1                                                                          :1 '   ' 

I ",1 

:
             

:    Alloions (deg) 
:   — Rudder {deg) 
  Aileron Constraints''- ON 

:  

 j \  

Time (sees) Time (sees) 

Figure 138. Case 22 - Longitudinal Inputs Figure 139. Case 22 - Lateral Inputs 

D.ll  Case 24 
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D.12 Case 26 
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